Skip to main content

Ecdysteroids and Their Importance in Endocrine Disruption Research

  • Chapter

There has been a rapidly growing interest in the impacts of potential endocrine disrupters on humans and the environment since the early 1990s. To date, most studies have focused on evaluating effects of potential endocrine disrupters on vertebrates, whereas significant less attention has been paid (and this continues to be the case) to effects on invertebrates. Invertebrates constitute the majority of animal biodiversity on this planet, their abundance greatly exceeds that of the vertebrates, and many invertebrates have key ecological functions and important economic value. Ecdysteroids are key hormones in insects, crustaceans, and other arthropods, and there is increasing laboratory and field evidence that ecdysteroid signaling can be disrupted by chemicals in the environment. In this chapter, we give an overview of the current scientific knowledge that emphasizes the importance of ecdysteroids in invertebrate endocrine disruption research and we present future research needs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abigail P, Moreno R, Medesani DA, Rodriguez EM (2003) Inhibition of molting by cadmium in the crab Chasmagnathus granulata (Decapoda Brachyura). Aquatic Toxicology 64:155–164

    Article  Google Scholar 

  • Adler JH, Grebenok RJ (1995) Biosynthesis and distribution of insect-molting hormones in plants — a review. Lipids 30:257–262

    Article  PubMed  CAS  Google Scholar 

  • Aguinaldo AMA, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493

    Article  PubMed  CAS  Google Scholar 

  • Arnold SF, Robinson MK, Notides AC, Guillette LJ, McLachlan JA (1996) A yeast estrogen screen for examining the relative exposure of cells to natural and xenoestrogens. Environmental Health Perspectives 104:544–548

    Article  PubMed  CAS  Google Scholar 

  • Asazuma H, Nagata S, Kono M, Nagasawa H (2007) Molecular cloning and expression analysis of ecdysone receptor and retinoid X receptor from the kuruma prawn, Marsupenaeus japoni-cus. Comparative Biochemistry and Physiology B — Biochemistry and Molecular Biology 148:139–150

    Article  Google Scholar 

  • Barata C, Porte C, Baird DJ (2004) Experimental designs to assess endocrine disrupting effects in invertebrates — a review. Ecotoxicology 13:511–517

    Article  PubMed  CAS  Google Scholar 

  • Barker GC, Chitwood DJ, Rees HH (1990) Ecdysteroids in helminths and annelids. Invertebrate Reproduction and Development 18:1–11

    CAS  Google Scholar 

  • Beckage NE, Marion KM, Walton WE, Wirth MC, Tan FF (2004) Comparative larvicidal toxici- ties of three ecdysone agonists on the mosquitos Aedes aegypti, Culex quinquefasciatus, and Anopheles gambiae. Archives of Insect Biochemistry and Physiology 57:111–122

    Article  PubMed  CAS  Google Scholar 

  • Bergeron JM, Crews D, McLachlan JA (1994) PCBs as environmental estrogens — turtle sex determination as a biomarker of environmental contamination. Environmental Health Perspectives 102:780–781

    Article  PubMed  CAS  Google Scholar 

  • Boudjelida H, Bouaziz A, Soin T, Smagghe G, Soltani N (2005) Effect of ecdysone agonist halofenozide against Culex pipiens. Pesticide Biochemistry and Physiology 83:115–123

    Article  CAS  Google Scholar 

  • Chung ACK, Durica DS, Clifton SW, Roe BA, Hopkins PM (1998) Cloning of crustacean ecdys- teroid receptor and retinoid-X receptor gene homologs and elevation of retinoid-X receptor mRNA by retinoic acid. Molecular and Cellular Endocrinology 139:209–227

    Article  PubMed  CAS  Google Scholar 

  • Clare AS, Rittschof D, Costlow JD (1992) Effects of the nonsteroidal ecdysone mimic RH-5849 on larval crustaceans. Journal of Experimental Zoology 262:436–440

    Article  CAS  Google Scholar 

  • deFur PL, Crane M, Ingersoll CG, Tattersfield LJ (1999) Endocrine disruption in invertebrates: endocrinology, testing and assessment. SETAC Press, Pensacola, FL

    Google Scholar 

  • Dirzo R, Raven PH (2003) Global state of biodiversity and loss. Annual Review of Environmental Resources 28:137–167

    Article  Google Scholar 

  • Foster JM, Mercer JG, Rees HH (1992) Analysis of ecdysteroids in the trematodes Schistosomamansoni and Fasciola hepatica. Tropical Medicine and Parasitology 43:239–244

    PubMed  CAS  Google Scholar 

  • Frand AR, Russel S, Ruvkun G (2005) Functional genomic analysis of C. elegans molting. PLoS Biology 3:1719–1733

    Article  CAS  Google Scholar 

  • Gäde G, Hoffmann KH, Spring JH (1997) Hormonal regulation in insects: facts, gaps and future directions. Physiological Review 77:963–1032

    Google Scholar 

  • Gilbert LI, Rybczinski R, Warren JT (2002) Control and biochemical nature of the ecdysteroidog- enic pathway. Annual Review of Entomology 47:883–916

    Article  PubMed  CAS  Google Scholar 

  • Gilbertson M, Fox GA (1977) Pollutant-associated embryonic mortality of great lakes herring gulls. Environmental Pollution 12:211–216

    Article  CAS  Google Scholar 

  • Gissendanner CR, Sluder AE (2000) nhr-25, the Caenorhabditis elegans ortholog of ftz-f1, is required for epidermal and somatic gonadal development. Developmental Biology 221:259–272

    Article  PubMed  CAS  Google Scholar 

  • Gissendanner CR, Crossgrove K, Kraus KA, Maina CV, Sluder AE (2004) Expression and function of conserved nuclear receptor genes in Caenorhabditis elegans. Developmental Biology 266:399–416

    Article  PubMed  CAS  Google Scholar 

  • Glenner H, Thomsen PF, Hebsgaard MB, Sorensen MV, Willerslev E (2006) The origin of insects. Science 314:1883–1884

    Article  PubMed  CAS  Google Scholar 

  • Gunamalai V, Kirubagaran R, Subramoniam T (2004) Hormonal coordination of molting and female reproduction by ecdysteroids in the mole crab Emerita asiatica (Milne Edwards). General and Comparative Endocrinology 138:128–138

    Article  PubMed  CAS  Google Scholar 

  • Hahn T, Liess M, Schulz R (2001) Effect of the hormone mimetic insecticide tebufenozide on Chironomus riparius larvae in two exposure setups. Ecotoxicology and Environmental Safety 49:171–178

    Article  PubMed  CAS  Google Scholar 

  • Hahn T, Schenk K, Schulz R (2002) Environmental chemicals with known endocrine potential affect yolk protein content in the aquatic insect Chironomus riparius. Environmental Pollution 120:525–528

    PubMed  CAS  Google Scholar 

  • Heip C, Vincx M, Vranken G (1985) The ecology of marine nematodes. Oceanography and Marine Biology 23:399–489

    Google Scholar 

  • Holmes P, Harrison P, Bergman A, Brandt I, Brouwer B, Keiding N, Randall G, Sharpe R, Skakkebaek N, Ashby J, Barlow S, Dickerson R, Humfrey C, Smith LM (1997) European workshop on the impact of endocrine disrupters on human health and wildlife. Proceedings of a workshop; 2–4 December 1996, Weybridge, UK. Report No. EUR 17549

    Google Scholar 

  • Höss S, Weltje L (2007) Endocrine disruption in nematodes: effects and mechanisms. Ecotoxicology 16:15–28

    Article  PubMed  Google Scholar 

  • Huberman A (2000) Shrimp endocrinology. A review. Aquaculture 191:191–208

    CAS  Google Scholar 

  • Hutchinson TH, Ankley GT, Segner H, Tyler CR (2006) Screening and testing for endocrine disruption in fish — biomarkers as “signposts,” not “traffic lights,” in risk assessment. Environmental Health Perspectives 114:106–114

    Article  PubMed  Google Scholar 

  • Jayasankar V, Tsutsui N, Jasmani S, Saido-Sakanaka H, Yang WJ, Okuna A, Hien TTT, Aida K, Wilder MN (2002) Dynamics of vitellogenin mRNA expression and changes in hemolymph vitellogenin levels during ovarian maturation in the giant freshwater prawn Macrobranchium rosenbergii. Journal of Experimental Zoology 293:675–682

    Article  PubMed  CAS  Google Scholar 

  • Kast-Hutcheson K, Rider C V, LeBlanc GA (2001) The fungicide propiconazole interferes with embryonic development of the crustacean Daphnia magna. Environmental Toxicology and Chemistry 20:502–509

    Article  Google Scholar 

  • Kato Y, Kobayashi K, Oda S, Tatarazako N, Watanabe H, Iguchi T (2007) Cloning and characterization of the ecdysone receptor and ultraspiracle protein from the water flea Daphnia magna. Journal of Endocrinology 193:183–194

    Article  PubMed  CAS  Google Scholar 

  • Kim HW, Chang ES, Mykles DL (2005) Three calpains and ecdysone receptor in the land crab Gecarcinus lateralis: sequences, expression and effects of elevated ecdysteroid induced by eyestalk ablation. Journal of Experimental Biology 208:3177–3197

    Article  PubMed  CAS  Google Scholar 

  • Kostrouchova M, Krause M, Kostrouch Z, Rall JE (2001) Nuclear hormone receptor CHR3 is a critical regulator of all four larval molts of the nematode Caenorahbiditis elegans. Proceedings of the National Academy of Sciences of the United States of America 98:7360–7365

    Article  PubMed  CAS  Google Scholar 

  • Kreutzweiser DP, Gunn JM, Thompson DG, Pollard HG, Faber MJ (1998) Zooplankton community response to a novel forest insecticide, tebufenozide (RH-5992), in littoral lake enclosures. Canadian Journal of Fisheries and Aquatic Sciences 55:639–648

    Article  Google Scholar 

  • LeBlanc GA (2007) Crustacean endocrine toxicology: a review. Ecotoxicology 16:61–81

    Article  PubMed  CAS  Google Scholar 

  • LeBlanc GA, Mu X, Rider CV (2000) Embryotoxicity of the alkylphenol degradation product 4-nonylphenol to the crustacean Daphnia magna. Environmental Health Perspectives 108:1133–1138

    Article  PubMed  CAS  Google Scholar 

  • Mercer JG, Munn AE, Rees HH (1988) Caenorhabditis elegans — occurrence and metabolism of ecdysteroids in adults and dauer larvae. Comparative Biochemistry and Physiology B 90:261–267

    Article  CAS  Google Scholar 

  • Mu X, LeBlanc GA (2002) Environmental antiecdysteroids alter embryo development in the crustacean Daphnia magna. Journal of Experimental Zoology 292:287–292

    Article  PubMed  CAS  Google Scholar 

  • Mu X, Rider CV, Hwang GP, Hoy H, LeBlanc GA (2005) Covert signal disruption: anti-ecdysteroidal activity of bisphenol A involves cross-talk between pathways. Environmental Toxicology and Chemistry 24:146–152

    Article  PubMed  CAS  Google Scholar 

  • Novillo A, Won SJ, Li C, Callard IP (2005) Changes in nuclear receptor and vitellogenin gene expression in response to steroids and heavy metal in Caenorhabditis elegans. Integrative and Comparative Biology 45:61–71

    Article  CAS  Google Scholar 

  • Reichert K, Menzel R (2005) Expression profiling of five different xenobiotics using a Caenorhabditis elegans whole genomic microarray. Chemosphere 61:229–237

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez EM, Medesani DA, Fingerman M (2007) Endocrine disruption in crustaceans due to pollutants: A review. Comparative Biochemistry and Physiology, Part A 146:661–671

    Article  Google Scholar 

  • Shurin JB, Dodson SI (1997) Sublethal toxic effects of cyanobacteria and nonylphenol on environmental sex determination and development. Environmental Toxicology and Chemistry 16:1269–1276

    Article  CAS  Google Scholar 

  • Soin T, Smagghe G (2007) Endocrine disruption in aquatic insects: a review. Ecotoxicology 16:83–93

    Article  PubMed  CAS  Google Scholar 

  • Subramoniam T (2000) Crustacean ecdysteroids in reproduction and embryogenesis. Comparitive Biochemistry and Physiology C 125:135–156

    CAS  Google Scholar 

  • Suzuki S, Yamasaki K, Fujita T, Mamiya Y, Sonobe H (1996) Ovarian and hemolymph ecdyster- oids in the terrestrial isopod Armadillidium vulgare (Malacostracan Crustacea). General and Comparative Endocrinology 104:129–138

    Article  PubMed  CAS  Google Scholar 

  • Swevers L, Kravariti L, Ciolfi S, Xenou-Kokoletsi M, Ragoussis N, Smagghe G, Nakagawa Y, Mazomenos B, Iatrou K (2003) A cell-based high-throughput screening system for detecting ecdysteroid agonists and antagonists in plant extracts and libraries of synthetic compounds. The FASEB Journal 18:134–136

    PubMed  Google Scholar 

  • Tseng DY, Chen YN, Liu KF, Kou GH, Lo CF, Kuo CM (2002) Hepatopancreas and ovary are sites of vitellogenin synthesis as determined from partial cDNA encoding of vitellogenin in the marine shrimp, Peneaus vannamei. Invertebrate Reproduction & Development 42:137–143

    CAS  Google Scholar 

  • Verslycke T, Ghekiere A, Raimonda S, Janssen C (2007) Mysid crustaceans as standard models for the screening and testing of endocrine-disrupting chemicals. Ecotoxicology 16:205–219

    Article  PubMed  CAS  Google Scholar 

  • Weltje L, Schulte-Oehlmann U (2007) The seven year itch — progress in research on endocrine disruption in aquatic invertebrates since 1999. Ecotoxicology 16:1–3

    Article  Google Scholar 

  • Yao T, Forman B, Jiang Z, Cherbas L, Chen J, McKeown M, Cherbas P, Evans R (1993) Functional ecdysone receptor is the product of EcR and Ultraspiracle genes. Nature 366:476–479

    Article  PubMed  CAS  Google Scholar 

  • Yochem J, Tuck S, Greenwald I, Han M (1999) A gp330/megalin-related protein is required in the major epidermis of Caenorhabditis elegans for completion of molting. Developmental Biology 126:597–606

    CAS  Google Scholar 

  • Young NJ, Webster SG, Jones DA, Rees HH (1991) Profile of embryonic ecdysteroids in the decapod crustacean, Macrobrachium rosenbergii. Invertebrate Reproduction & Development 20:201–212

    CAS  Google Scholar 

  • Yeates GW (1981) Nematode populations in relation to soil environmental factors: a review. Pedobiologia 22:312–338

    Google Scholar 

  • Zou EM (2005) Impacts of xenobiotics on crustacean molting: the invisible endocrine disruption. Integrative and Comparative Biology 45:33–38

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Soin, T., Verslycke, T., Janssen, C., Smagghe, G. (2009). Ecdysteroids and Their Importance in Endocrine Disruption Research. In: Smagghe, G. (eds) Ecdysone: Structures and Functions. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9112-4_22

Download citation

Publish with us

Policies and ethics