Skip to main content

SAR and QSAR Studies For In Vivo and In Vitro Activities of Ecdysone Agonists

  • Chapter
Ecdysone: Structures and Functions

Insect molting is regulated by the steroid 20-hydoxyecdysone interacting with the ecdysone receptor (EcR) together with either the retinoid X receptor (RXR) or its homolog, ultraspiracle (USP). Similarly, the non-steroidal diacylhydrazines (DAHs) also bind to EcR, but regulate molting in a dysfunctional manner; they are therefore insecticidal. The four DAHs tebufenozide, methoxyfenozide, chromafenoz-ide and halofenozide have been commercialized to control Lepidoptera and Coleoptera. DAH congeners with various substituents at both benzene rings were synthesized and their ecdysonergic activity in whole body, tissue, cell and protein was quantified. Insecticidal potency (whole body) was measured against three insect species: rice stem borer Chilo suppressalis, beet armyworm Spodoptera exigua, and Colorado potato beetle Leptinotarsa decemlineata. Substituent effects on the activity were analyzed using quantitative structure-activity relationship (QSAR) methods such as the classical (Hansch-Fujita) QSAR and comparative molecular field analysis (CoMFA). These QSAR methods were also applied to analyse in vitro ecdysonergic potency (tissue and cell level) and EcR binding (protein level). Molecular hydrophobicity was extracted as an important physicochemical property to activity at all biosystem levels. CoMFA results for activation of gene expression in the silkworm Bombyx mori are consistent with the milieu of the ligand binding pocket homology-modeled from the crystal structure of DAH-bound EcR of the tobacco budworm Heliothis virescens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asao, M., Shimizu, R., Nakao, K. and Fujita, T. (1997) QREG; 2.05. Japan Chemistry Program Exchange, Society of Computer Chemistry, Japan

    Google Scholar 

  • Ashburner, M., Chihara, C., Meltzer, P. and Richards, G. (1974) Temporal control of puffing activity in polytene chromosomes. Cold Spring Harb. Symp. Quant. Biol. 38: 655–662

    PubMed  CAS  Google Scholar 

  • Billas, I.M.L., Iwema, T., Garnier, J.M., Mitschler, A., Rochel, N. and Moras, D. (2003) Structural adaptability in the ligand-binding pocket of the ecdysone hormone receptor. Nature 426 (Nov 6): 91–96

    Article  PubMed  CAS  Google Scholar 

  • Bondi, A. (1964) van der Waals volumes and radii. J. Phys. Chem. 68: 441–451

    Article  CAS  Google Scholar 

  • Bordas, B., Belai, I., Lopata, A. and Szanto, Z. (2007) Interpretation of scoring functions using 3D molecular fields, mapping the diacyl-hydrazine-binding pocket of an insect ecdysone receptor. J. Chem. Inf. Model. 47: 176–185

    Article  PubMed  CAS  Google Scholar 

  • Browning, C., Martin, E., Loch, C., Wurtz, J.M., Moras, D., Stote, R.H., Dejaegere, A.P. and Billas, I.M.L. (2007) Critical role of desolvation in the binding of 20-hydroxyecdysone to the ecdysone receptor. J. Biol. Chem. 282 (45): 32924–32934

    Article  PubMed  CAS  Google Scholar 

  • Carlson, G.R., Dhadialla, T.S., Hunter, R., Jansson, R.K., Jany, C.S., Lidert, Z. and Slawecki, R.A. (2001) The chemical and biological properties of methoxyfenozide, a new insecticidal ecdysteroid agonist. Pest Manag. Sci. 57 (2): 115–119

    Article  PubMed  CAS  Google Scholar 

  • Carmichael, J.A., Lawrence, M.C., Graham, L.D., Pilling, P.A., Epa, V.C., Noyce, L., Lovrecz, G., Winkler, D.A., Pawlak-Skrzecz, A., Eaton, R.E., Hannan, G.N. and Hill, R.J. (2005) The X-ray structure of a hemipteran ecdysone receptor ligand-binding domain: comparison with a lepidopteran ecdysone receptor ligand-binding domain and implications for insecticide design. J. Biol. Chem. 280: 22258–22269.

    Article  PubMed  CAS  Google Scholar 

  • Charton, M. (1981) Electrical effect substituent constants for correlation analysis. Prog. Phys. Org. Chem. 13: 119–251

    Article  CAS  Google Scholar 

  • Cramer III, R.D., Patterson, D.E. and Bunce, J.D. (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 110: 5959–5967

    Article  CAS  Google Scholar 

  • Dhadialla, T.S., Carlson, G.R. and Le, D.P. (1998) New insecticides with ecdysteroidal and juvenile hormone activity. Annu. Rev. Entomol. 43: 545–569

    Article  PubMed  CAS  Google Scholar 

  • Dinan, L., Hormann, R.E. and Fujimoto, T. (1999a) An extensive ecdysteroid CoMFA. J. Comput. Aid. Mol. Des. 13 (2): 185–207

    Article  CAS  Google Scholar 

  • Dinan, L., Sarker, S.D., Bourne, P., Whiting, P., Sik, V. and Rees, H.H. (1999b) Phytoecdysteroids in seeds and plants of Rhagodia baccata (Labill.) Moq. (Chenopodiaceae). Arch. Insect Biochem. Physiol. 41 (1): 18–23

    Article  CAS  Google Scholar 

  • Dinan, L., Savchenko, T. and Whiting, P. (2001a) Phytoecdysteroids in the genus Asparagus (Asparagaceae). Phytochemistry 56 (6): 569–576

    Article  CAS  Google Scholar 

  • Dinan, L., Whiting, P., Bourne, P. and Coll, J. (2001b) 8-O-acetylharpagide is not an ecdysteroid agonist. Insect Biochem. Mol. Biol. 31 (11): 1077–1082

    Article  CAS  Google Scholar 

  • Fristrom, J.W. and Yund, M.A. (1976) Characteristics of the action of ecdysones on Drosophila imaginal discs cultured in vitro. In Invertebrate Tissue Culture Research Application (Maramorosch, K., ed.), pp. 161–178, Academic, New York

    Google Scholar 

  • Fujita, T. (1990) The extrathermodynamic approach to drug design. In Comprehensive Medicinal Chemistry (Ramsden, C.A., ed.), pp. 497–560, Pergamon Press, Oxford

    Google Scholar 

  • Fujita, T. and Nakagawa, Y. (1991) QSAR approaches in pesticide metabolism studies: an example in benzoylphenylurea larvicides. In Pesticide Chemistry: Advances in International Research, Development, and Legislation (Frehse, H., ed.), pp. 297–304, VCH

    Google Scholar 

  • Fujita, T. and Nishioka, T. (1976) The analysis of the ortho effect. Prog. Phys. Org. Chem. 12: 49–89

    Article  CAS  Google Scholar 

  • Fujita, T., Iwasa, J. and Hansch, C. (1964) A new substituent constant, π, derived from partition coefficients. J. Am. Chem. Soc. 86: 5175–5180

    Article  CAS  Google Scholar 

  • Gilbert, L.I. and Warren, J.T. (2005) A molecular genetic approach to the biosynthesis of the insect steroid molting hormone. Vitam. Horm. 73: 31–57

    Article  PubMed  CAS  Google Scholar 

  • Grace, T.D.C. (1967) Establishment of a line of cells from the silkworm Bombyx mori. Nature 216: 613

    Article  CAS  Google Scholar 

  • Hansch, C. and Fujita, T. (1964) p-σ-π Analysis. A method for the correlation of biological activity and chemical structure. J. Am. Chem. Soc. 86: 1616–1626

    Article  CAS  Google Scholar 

  • Hansch, C, Leo, AJ. and Hoekman, D. (1995) Exploring QSAR-Hydrophobic, Electronic, and Steric Constants, American Chemical Society, Washington, DC

    Google Scholar 

  • Hopfinger, A.J., Wang, S., Tokarski, J.S., Jin, B., Albuquerque, M., Madhav, P.J. and Duraiswami, C. (1997) Construction of 3D-QSAR models using the 4D-QSAR analysis formalism. J. Am. Chem. Soc. 119: 10509–10524

    Article  CAS  Google Scholar 

  • Hormann, R.E., Dinan, L. and Whiting, P. (2003) Superimposition evaluation of ecdysteroid agonist chemotypes through multidimensional QSAR. J. Comput. Aid. Mol. Des. 17 (2–4): 135–153

    Article  CAS  Google Scholar 

  • Hormann, R.E., Chortyk, O. and Le, D.P. (2004) Oxadiazoline ligands for modulating the expression of exogenous genes via an ecdysone receptor complex. In US 2004/017651 A1

    Google Scholar 

  • Hormann, R.E., Smagghe, G. and Nakagawa, Y. (2008) Multidimensional quantitative structure-activity relationships of diacylhydrazine toxicity in Spodoptera exigua, Chilo suppressalis, and Leptinotarsa decemlineata. QSAR Combinat. Sci. 27(9): 1098–1112

    Article  CAS  Google Scholar 

  • Hsu, A.C.-T. (1991) 1,2-Diacyl-1-alkylhydrazines, a new class of insect growth regulators. In Synthesis and Chemistry of Agrochemicals II (Vol. 443) (Baker, D.R. Fenyes, J.G. and Moberg, W.K., eds.), pp. 478–490, American Chemical Society

    Google Scholar 

  • Hsu, A.C.-T., Fujimoto, T.T. and Dhadialla, T.S. (1997) Structure-activity study and conformational analysis of RH-5992, the first commercialized nonsteroidal ecdysone agonist. In Phytochemicals for Pest Control (Vol. 658) (Hedin, PA. Hollingworth, R.M. Masler, E.P Miyamoto, J. and Thompson, D.G., eds.), pp. 206–219, American Chemical Society, Washington, DC

    Google Scholar 

  • Huber, R. and Hoppe, W. (1965) Zur Chemie des Ecdysons, VII: Die Kristall- und Molekulstructuranalyse des Insektenverpuppungshormons Ecdyson mit der automatisierten Faltmolekulmethode. Chem. Ber. 98: 2403–2424

    Article  PubMed  CAS  Google Scholar 

  • Imai, S., Fujioka, S., Nakanishi, K., Koreeda, M. and Kurokawa, T. (1967) Extraction of ponaster-one A and ecdysterone from podocarpaceae and related plants. Steroids 10 (5): 557–565

    Article  PubMed  CAS  Google Scholar 

  • Iwema, T, Billas, I.M., Beck, Y., Bonneton, F, Nierengarten, H., Chaumot, A., Richards, G., Laudet, V. and Moras, D. (2007) Structural and functional characterization of a novel type of ligand-independent RXR-USP receptor. EMBO J. 26 (16): 3770–3782

    Article  PubMed  CAS  Google Scholar 

  • Karlson, P., Hoffmeister, H., Hummel, H., Hocks, P. and Gerhard, S. (1965) Zur Chemie des Ecdysons, VI: Reaktionen des Ecdysonmolekuls. Chem. Ber. 98: 2394–2402

    Article  PubMed  CAS  Google Scholar 

  • Kasuya, A., Sawada, Y, Tsukamoto, Y, Tanaka, K., Toya, T. and Yanagi, M. (2003) Binding mode of ecdysone agonists to the receptor: comparative modeling and docking studies. J. Mol. Model. 9 (1): 58–65

    PubMed  CAS  Google Scholar 

  • Kiriishi, S., Rountree, D.B., Sakurai, S. and Gilbert, L.I. (1990) Prothoracic gland synthesis of 3-dehydroecdysone and its hemolymph 3 beta-reductase mediated conversion to ecdysone in representative insects. Experientia 46 (7): 716–721

    Article  PubMed  CAS  Google Scholar 

  • Kitahara, K., Nakagawa, Y, Nishioka, T. and Fujita, T. (1983) Cultured integument of Chilo suppressalis as a bioassay system of insect growth regulators. Agric. Biol. Chem. 47 (7): 1583–1589

    CAS  Google Scholar 

  • Klebe, G., Abraham, U. and Mietzner, T. (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activities. J. Med. Chem. 37: 4130–4146

    Article  PubMed  CAS  Google Scholar 

  • Klotz, D.M., Ladlie, B.L., Vonier, P.M., McLachlan, J.A. and Arnold, S.F (1997) o,p'-DDT and its metabolites inhibit progesterone-dependent responses in yeast and human cells. Mol. Cell. Endocrinol. 129 (1): 63–71

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, M., Nakanishi, K. and Koreeda, M. (1967) The moulting hormone activity of ponasterones on Musca domestica (Diptera) and Bombyx mori (Lepidoptera). Steroids 9: 529–536

    Article  PubMed  CAS  Google Scholar 

  • Kutter, E. and Hansch, C. (1969) Steric parameters in drug design. Monoamine oxidase inhibitors and antihistamines. J. Med. Chem.: 647–652

    Google Scholar 

  • Mendis, A.H., Rose, M.E., Rees, H.H. and Goodwin, T.W. (1983) Ecdysteroids in adults of the nematode, Dirofilaria immitis. Mol. Biochem. Parasitol. 9 (3): 209–226

    Article  PubMed  CAS  Google Scholar 

  • Mendis, A.H., Rees, H.H. and Goodwin, T.W. (1984) The occurrence of ecdysteroids in the cestode, Moniezia expansa. Mol. Biochem. Parasitol. 10 (2): 123–138

    Article  PubMed  CAS  Google Scholar 

  • Mikitani, K. (1995) Sensitive, rapid and simple method for evaluation of ecdysteroid agonist activity based on the mode of action of the hormone. J. Seric. Sci. Jpn. 64: 534–539

    CAS  Google Scholar 

  • Mikitani, K. (1996a) An automated ecdysteroid receptor binding assay using a 96-well microplate. J. Seric. Sci. Jpn. 65: 141–144

    Google Scholar 

  • Mikitani, K. (1996b) A new nonsteroidal chemical class of ligand for the ecdysteroid receptor 3,5-di-tert-butyl-4-hydroxy-N-isobutyl-benzamide shows apparent insect molting hormone activities at molecular and cellular levels. Biochem. Biophys. Res. Commun. 227 (2): 427–432

    Article  CAS  Google Scholar 

  • Minakuchi, C., Nakagawa, Y., Kiuchi, M., Tomita, S. and Kamimura, M. (2002) Molecular cloning, expression analysis and functional confirmation of two ecdysone receptor isoforms from the rice stem borer Chilo suppressalis. Insect Biochem. Mol. Biol. 32 (9): 999–1008

    Article  PubMed  CAS  Google Scholar 

  • Minakuchi, C., Nakagawa, Y., Kamimura, M. and Miyagawa, H. (2003a) Binding affinity of nonsteroidal ecdysone agonists against the ecdysone receptor complex determines the strength of their molting hormonal activity. Eur. J. Biochem. 270: 4095–4104

    Article  CAS  Google Scholar 

  • Minakuchi, C., Nakagawa, Y., Kiuchi, M., Seino, A., Tomita, S. and Kamimura, M. (2003b) Molecular cloning and expression analysis of ultraspiracle (USP) from the rice stem borer Chilo suppressalis. Insect Biochem. Mol. Biol. 33 (1): 41–49

    CAS  Google Scholar 

  • Minakuchi, C., Nakagawa, Y. and Miyagawa, H. (2003c) Validity analysis of a receptor binding assay for ecdysone agonists using cultured intact insect cells. J. Pestic. Sci. 28: 55–57

    Article  CAS  Google Scholar 

  • Minakuchi, C., Nakagawa, Y., Soya, Y. and Miyagawa, H. (2004) Preparation of functional ecdys-teroid receptor proteins (EcR and USP) using a wheat germ cell-free protein synthesis system. J. Pestic. Sci. 29: 189–194

    Article  CAS  Google Scholar 

  • Minakuchi, C., Nakagawa, Y., Kamimura, M. and Miyagawa, H. (2005) Measurement of receptor-binding activity of non-steroidal ecdysone agonists using in vitro expressed receptor proteins (EcR/USP complex) of Chilo suppressalis and Drosophila melanogaster. In New Discoveries in Agrochemicals (Vol. 892) (Clark, J.M. and Ohkawa, H., eds.), pp. 191–200, American Chemical Society

    Google Scholar 

  • Minakuchi, C., Ogura, T., Miyagawa, H. and Nakagawa, Y. (2007) Effects of the structures of ecdysone receptor (EcR) and ultraspiracle (USP) on the ligand-binding activity of the EcR/ USP heterodimer. J. Pest. Sci. 32 (4)

    Google Scholar 

  • Nakagawa, Y. (2005) Nonsteroidal ecdysone agonists. Vitam. Horm. 73: 131–173

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, Y., Kitahara, K., Nishioka, T., Iwamura, H. and Fujita, T. (1984) Quantitative structure-activity studies of benzoylphenylurea larvicides: I. Effect of substituents at aniline moiety against Chilo suppressalis walker. Pestic. Biochem. Physiol. 21: 309–325

    Article  CAS  Google Scholar 

  • Nakagawa, Y., Iwamura, H. and Fujita, T. (1985) Quantitative structure-activity studies of benzoylphenylurea larvicides. II. Effect of benzyloxy substituents at aniline moiety against Chilo suppressalis Walker. Pestic. Biochem. Physiol. 23: 7–12

    Article  CAS  Google Scholar 

  • Nakagawa, Y., Sotomatsu, T., Irie, K., Kitahara, K., Iwamura, H. and Fujita, T. (1987) Quantitative structure-activity studies of benzoylphenylurea larvicides. III. Effects of substituents at the benzoyl moiety. Pestic. Biochem. Physiol. 27: 143–155

    Article  CAS  Google Scholar 

  • Nakagawa, Y., Akagi, T., Iwamura, H. and Fujita, T. (1988) Quantitative structure-activity studies benzoylphenylurea larvicides. V. Substituted pyridyloxyphenyl and related derivatives. Pestic. Biochem. Physiol. 30: 67–78

    Article  CAS  Google Scholar 

  • Nakagawa, Y., Akagi, T., Iwamura, H. and Fujita, T. (1989) Quantitative structure-ajctivity studies of benzoylphenylurea larvicides. VI. Comparison of substituent effects among activities against different insect species. Pestic. Biochem. Physiol. 33: 144–157

    Article  CAS  Google Scholar 

  • Nakagawa, Y., Matsutani, M., Kurihara, N., Nishimura, K. and Fujita, T. (1992) Quantitative structure-activity studies of benzoylphenylurea larvicides. VIII. Inhibition of N-acetylglucosamine incorporation into the cultured integument of Chilo suppressalis Walker. Pestic. Biochem. Physiol. 43: 141–151

    Article  CAS  Google Scholar 

  • Nakagawa, Y., Nishimura, K., Oikawa, N., Kurihara, N. and Ueno, T. (1995a) Activity of ecdys-one analogs in enhancing N-acetylglucosamine incorporation into the cultured integument of Chilo suppressalis. Steroids 60 (5): 401–405

    Article  CAS  Google Scholar 

  • Nakagawa, Y., Shimizu, B., Oikawa, N., Akamatsu, M., Nishimura, K., Kurihara, N., Ueno, T. and Fujita, T. (1995b) Three-dimensional quantitative structure-activity analysis of steroidal and dibenzoylhydrazine-type ecdysone agonists. In Classical and Three-Dimensional QSAR in Agrochemistry (Vol. 606) (Hansch, C. and Fujita, T., eds.), pp. 288–301, American Chemical Society, Washington, DC

    Google Scholar 

  • Nakagawa, Y., Soya, Y., Nakai, K., Oikawa, N., Nishimura, K., Ueno, T., Fujita, T. and Kurihara, N. (1995c) Quantitative structure-activity studies of insect growth regulators. XI. Stimulation and inhibition of N-acetylglucosamine incorporation in a cultured integument system by substituted N-tert-butyl-N,N′-dibenzoylhydrazines. Pestic. Sci. 43: 339–345

    Article  CAS  Google Scholar 

  • Nakagawa, Y., Hattori, K., Shimizu, B., Akamatsu, M., Miyagawa, H. and Ueno, T. (1998) Quantitative structure-activity studies of insect growth regulators XIV. Three dimensional quantitative structure-activity relationship of ecdysone agonists including dibenzoylhydrazine analogs. Pestic. Sci. 53: 267–277

    Article  CAS  Google Scholar 

  • Nakagawa, Y., Smagghe, G., Kugimiya, S., Hattori, K., Ueno, T., Tirry, L. and Fujita, T. (1999) Quantitative structure-activity studies of insect growth regulators: XVI. Substituent effects of dibenzoylhydrazines on the insecticidal activity to Colorado potato beetle Leptinotarsa decem-lineata. Pestic. Sci. 55: 909–918

    Article  CAS  Google Scholar 

  • Nakagawa, Y., Hattori, K., Minakuchi, C., Kugimiya, S. and Ueno, T. (2000a) Relationships between structure and molting hormonal activity of tebufenozide, methoxyfenozide, and their analogs in cultured integument system of Chilo suppressalis Walker. Steroids 65 (3): 117–123

    Article  CAS  Google Scholar 

  • Nakagawa, Y., Minakuchi, C. and Ueno, T. (2000b) Inhibition of [3H]ponasterone A binding by ecdysone agonists in the intact Sf-9 cell line. Steroids 65 (9): 537–542

    Article  CAS  Google Scholar 

  • Nakagawa, Y., Smagghe, G., Van Paemel, M., Tirry, L. and Fujita, T. (2001) Quantitative structure-activity studies of insect growth regulators: XVIII. Effects of substituents on the aromatic moiety of dibenzoylhydrazines on larvicidal activity against the Colorado potato beetle Leptinotarsa decemlineata. Pest Manag. Sci. 57 (9): 858–865

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, Y., Minakuchi, C., Takahashi, K. and Ueno, T. (2002a) Inhibition of [3H]ponasterone A binding by ecdysone agonists in the intact Kc cell line. Insect Biochem. Mol. Biol. 32 (2): 175–180

    Article  CAS  Google Scholar 

  • Nakagawa, Y., Smagghe, G., Tirry, L. and Fujita, T. (2002b) Quantitative structure-activity studies of insect growth regulators: XIX. Effects of substituents on the aromatic moiety of dibenzoyl-hydrazines on larvicidal activity against the beet armyworm Spodoptera exigua. Pest Manag. Sci. 58 (2): 131–138

    Article  CAS  Google Scholar 

  • Nakagawa, Y., Takahashi, K., Kishikawa, H., Ogura, T., Minakuchi, C. and Miyagawa, H. (2005) Classical and three-dimensional QSAR for the inhibition of [3H]ponasterone A binding by diacylhydrazine-type ecdysone agonists to insect Sf-9 cells. Bioorg. Med. Chem. 13 (4): 1333–1340

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, Y., Sakai, A., Magata, F., Ogura, T., Miyashita, M. and Miyagawa, H. (2007) Molecular cloning of the ecdysone receptor and the retinoid X receptor from the scorpion Liocheles australasiae. FEBS J. 274 (23): 6191–6203

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi, K., Koreeda, M., Sasaki, L., Chang, M.L. and Hsu, H.Y. (1966) Insect hormones I. the structure of ponasterone A, an insect molting hormone from the leaves of Podocarpus makaii H. Chem. Commun., 915–917

    Google Scholar 

  • Nishioka, T., Fujita, T. and Nakajima, M. (1979) Effect on chitin synthesis inhibitors on cuticle formation of the cultured integument of Chilo suppressalis. J. Pestic. Sci. 4: 367–374

    CAS  Google Scholar 

  • Ogata, K. and Umeyama, H. (2000) An automatic homology modeling method consisting of database searches and simulated annealing. J Mol Graph Model 18 (3): 258–272, 306

    Article  PubMed  CAS  Google Scholar 

  • Ogura, T., Minakuchi, C., Nakagawa, Y., Smagghe, G. and Miyagawa, H. (2005) Molecular cloning, expression analysis and functional confirmation of ecdysone receptor and ultraspira-cle from the Colorado potato beetle Leptinotarsa decemlineata. FEBS J. 272: 4114–4128

    Article  PubMed  CAS  Google Scholar 

  • Oikawa, N., Nakagawa, Y., Soya, Y., Nishimura, K., Kurihara, N., Ueno, T. and Fujita, T. (1993) Enhancement of N-acetylglucosamine incorporation into the cultured integument of Chilo suppressalis by molting hormone and dibenzoylhydrazine insecticides. Pestic. Biochem. Physiol. 47 (3): 165–170

    Article  CAS  Google Scholar 

  • Oikawa, N., Nakagawa, Y., Nishimura, K., Ueno, T. and Fujita, T. (1994a) Quantitative structure-activity analysis of larvicidal 1-(substituted benzoyl)-2-benzoyl-1-tert-butylhydrazines against Chilo suppressalis. Pestic. Sci. 41: 139–148

    Article  CAS  Google Scholar 

  • Oikawa, N., Nakagawa, Y., Nishimura, K., Ueno, T. and Fujita, T. (1994b) Quantitative structure-activity studies of insect growth regulators X. Substituent effects on larvicidal activity of 1-tert-butyl-1-(2-chlorobenzoyl)-2-(substituted benzoyl)hydrazines against Chilo suppressalis and design synthesis of potent derivatives. Pestic. Biochem. Physiol. 48 (2): 135–144

    Article  CAS  Google Scholar 

  • Palli, S.R., Kapitskaya, M.Z., Kumar, M.B. and Cress, D.E. (2003) Improved ecdysone receptor-based inducible gene regulation system. Eur. J. Biochem. 270 (6): 1308–1315

    Article  PubMed  CAS  Google Scholar 

  • Palli, S.R., Tice, C.M., Margam, V.M. and Clark, A.M. (2005) Biochemical mode of action and differential activity of new ecdysone agonists against mosquitoes and moths. Arch. Biochem. Biophys. 58: 234–242

    CAS  Google Scholar 

  • Romer, F. (1979) Ecdysteroids in snail. Naturwissenschaften 66: 471–472

    Article  CAS  Google Scholar 

  • Sawada, Y., Yanai, T., Nakagawa, H., Tsukamoto, Y., Tamagawa, Y., Yokoi, S., Yanagi, M., Toya, T., Sugizaki, H., Kato, Y., Shirakura, H., Watanabe, T., Yajima, Y., Kodama, S. and Masui, A. (2003) Synthesis and insecticidal activity of benzoheterocyclic analogues of N′-benzoyl-N-(tert-butyl)benzohydrazide: Part 3. Modification of N-tert-butylhydrazine moiety. Pest Manag. Sci. 59 (1): 49–57

    Article  PubMed  CAS  Google Scholar 

  • Schallig, H., Young, N., Magee, R., de Jong-Brink, M. and HH, R. (1991) Identification of free and conjugated ecdysteroids in cercariae of the schistosome Trichobilharzia ocellata. Mol. Biochem. Parasitol. 49: 169–175

    Article  PubMed  CAS  Google Scholar 

  • Shimizu, B., Nakagawa, Y., Hattori, K., Nishimura, K., Kurihara, N. and Ueno, T. (1997) Molting hormonal and larvicidal activities of aliphatic acyl analogs of dibenzoylhydrazine insecticides. Steroids 62 (10): 638–642

    Article  PubMed  CAS  Google Scholar 

  • Smagghe, G., Nakagawa, Y., Carton, B., Mourad, A.K., Fujita, T. and Tirry, L. (1999) Comparative ecdysteroid action of ring-substituted dibenzoylhydrazines in Spodoptera exigua. Arch. Insect Biochem. Physiol. 41: 42–53

    Article  CAS  Google Scholar 

  • Smagghe, G., Carton, B., Heirman, A. and Tirry, L. (2000) Toxicity of four dibenzoylhydrazine correlates with evagination-induction in the cotton leafworm. Pestic. Biochem. Physiol. 68: 49–58

    Article  CAS  Google Scholar 

  • Smith, H.C., Cavanaugh, C.K., Friz, J.L., Thompson, C.S., Saggers, J.A., Michelotti, E.L., Garcia, J. and Tice, C.M. (2003) Synthesis and SAR of cis-1-benzoyl-1,2,3,4-tetrahydroquinoline ligands for control of gene expression in ecdysone responsive systems. Bioorg. Med. Chem. Lett. 13 (11): 1943–1946

    Article  PubMed  CAS  Google Scholar 

  • Sotomatsu, T., Nakagawa, Y. and Fujita, T. (1987) Quantitative structure-activity studies ben-zoylphenylurea larvicides. I V. Benzoyl ortho substituent effects and molecular conformation. Pestic. Biochem. Physiol. 27: 156–164

    Article  CAS  Google Scholar 

  • Swevers, L., Kravariti, L., Ciolfi, S., Xenou-Kokoletsi, M., Ragoussis, N., Smagghe, G., Nakagawa, Y., Mazomenos, B. and Iatrou, K. (2004) A cell-based high-throughput screening system for detecting ecdysteroid agonists and antagonists in plant extracts and libraries of synthetic compounds. FASEB J. 18 (1): 134–136

    PubMed  CAS  Google Scholar 

  • Tanaka, K., Tsukamoto, Y., Sawada, Y., Kasuya, A., Hotta, H., Ichinose, R., Watanabe, T., Toya, T., Yokoi, S., Kawagishi, A., Ando, M., Sadakane, S., Katsumi, S. and Masui, A. (2001) Chromafenozide: a novel lepidopteran insect control agent. Annu. Rep. Sankyo Res. Lab. 53: 1–49

    CAS  Google Scholar 

  • Tice, C.M., Hormann, R.E., Thompson, C.S., Friz, J.L., Cavanaugh, C.K., Michelotti, E.L., Garcia, J., Nicolas, E. and Albericio, F. (2003a) Synthesis and SAR of a-acylaminoketone ligands for control of gene expression. Bioorg. Med. Chem. Lett. 13 (3): 475–478

    Article  CAS  Google Scholar 

  • Tice, C.M., Hormann, R.E., Thompson, C.S., Friz, J.L., Cavanaugh, C.K. and Saggers, J.A. (2003b) Optimization of a-acylaminoketone ecdysone agonists for control of gene expression. Bioorg. Med. Chem. Lett. 13: 1883–1886

    Article  CAS  Google Scholar 

  • Toya, T., Fukasawa, H., Masui, A. and Endo, Y. (2002) Potent and selective partial ecdysone agonist activity of chromafenozide in Sf9 cells. Biochem. Biophys. Res. Commun. 292 (4): 1087–1091

    Article  PubMed  CAS  Google Scholar 

  • Verloop, A. (1983) The STERIMOL approach: further development of the method and new applications. In Pesticide Chemistry, Human Welfare and Environment (Vol. 1) (Miyamoto, J. and Kearney, P.C., eds.), pp. 339–344, Pergamon Press, Oxford

    Google Scholar 

  • Verloop, A., Hoogenstraaten, W. and Tipker, J. (1976) Development and application of new steric substituent parameters in drug design. In Drug Design (Vol. 4) (Ariens, E.J., ed.), pp. 165–206, Academic, New York

    Google Scholar 

  • Watanabe, B., Nakagawa, Y. and Miyagawa, H. (2003) Synthesis of a castasterone/ponasterone hybrid compound and evaluation of its molting hormone-like activity. J. Pestic. Sci. 28: 188–193

    Article  CAS  Google Scholar 

  • Wheelock, C.E., Nakagawa, Y., Harada, T., Oikawa, N., Akamatsu, M., Smagghe, G., Stefanou, D., Iatrou, K. and Swevers, L. (2006) High-throughput screening of ecdysone agonists using areporter gene assay followed by 3-D QSAR analysis of the molting hormonal activity. Bioorg. Med. Chem. 14 (4): 1143–1159

    Article  PubMed  CAS  Google Scholar 

  • Wing, K.D. (1988) RH 5849, a nonsteroidal ecdysone agonist: effects on a Drosophila cell line. Science 241 (4864): 467–469

    Article  PubMed  CAS  Google Scholar 

  • Wing, K.D., Slawecki, R.A. and Carlson, G.R. (1988) RH-5849: a nonsteroidal ecdysone agonist: effects on larval lepidoptera. Science 241: 470–472

    Article  PubMed  CAS  Google Scholar 

  • Yanagi, M., Tsukamoto, Y., Watanabe, T. and Kawagishi, A. (2006) Development of a novel lepidopteran insect control agent, chromafenozide. J. Pest. Sci. 31: 163–164(English), 182–189 (Japanesse)

    Article  CAS  Google Scholar 

  • Yao, T.-P., Forman, B.M., Jiang, Z., Cherbas, L., Chen, J.-D., McKeown, M., Cherbas, P. and Evans, R.M. (1993) Functional ecdysone receptor is the product of EcR and ultraspiracle genes. Nature 366 (6454): 476–479

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yoshiaki Nakagawa or Robert E. Hormann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Nakagawa, Y., Hormann, R.E., Smagghe, G. (2009). SAR and QSAR Studies For In Vivo and In Vitro Activities of Ecdysone Agonists. In: Smagghe, G. (eds) Ecdysone: Structures and Functions. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9112-4_20

Download citation

Publish with us

Policies and ethics