The Structure and Function of Ecdysone Receptors

  • Isabelle M. L. Billas
  • Christopher Browning
  • Michael C. Lawrence
  • Lloyd D. Graham
  • Dino Moras
  • Ronald J. Hill

The ligand-binding properties of recombinant ecdysone receptor EcR-USP heterodimeric ligand-binding domains (LBDs) from four insect orders are described for a range of ecdysteroids and for a dibenzoylhydrazine (DBH) insecticide (tebufenozide). Much of the order selectivity of the insecticide in the field is reproduced by the affinity of tebufenozide for the recombinant LBDs in the laboratory. Crystal structures are presented for the LBDs of ecdysone receptors from the pest insects Heliothis virescens, Bemisia tabaci and Tribolium castaneum in complex with ponasterone A, as well as of the H. virescens LBD in complex with 20-hydroxyecdysone and BYI06830 (a DBH insecticide). Comparison of ecdysteroid- and BYI06830-bound structures of the H. virescens LBD illustrates the way in which this remarkable protein can adapt its binding pocket to very different ligand chemistries. Finally, comparison of the ligand-binding pockets of H. virescens, B. tabaci and T. castaneum ecdysone receptors begins to provide insights at an atomic level of detail into the insect order selectivity of the DBH insecticides.


Ecdysone receptor ligand binding domain 20-hydroxyecdysone ponasterone A tebufenozide dibenzoylhydrazine X-ray crystal structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashburner, M. (1972). N-ethylmaleimide inhibition of the induction of gene activity by the hormone ecdysone. FEBS Lett. 22, 265–269.PubMedCrossRefGoogle Scholar
  2. Ashburner, M., Chiara, C., Meltzer, P., and Richards, G. (1973). Temporal control of puffing activity in polytene chromosomes. Cold Spring Harb. Symp. Quant. Biol. XXXVIII, 655–662.Google Scholar
  3. Becker, H.J. (1962). Die Puffs der Speicheldrusenchromosomen von Drosophila melanogaster. II. Die Auslosung der Puffbildung, ihre Spezifitat und ihre Beziehung zur Funktion der Ringdruse. Chromosoma (Berlin) 13, 341–384.CrossRefGoogle Scholar
  4. Bender, M., Imam, F.B., Talbot, W.S., Ganetzsky, B., and Hogness, D.S. (1997). Drosophila ecdysone receptor mutations reveal functional differences among receptor isoforms. Cell 91, 777–788.PubMedCrossRefGoogle Scholar
  5. Billas, I.M.L., Moulinier, L., Rochel, N., and Billas, I.M. (2001). Crystal structure of the ligand-binding domain of the ultraspiracle protein USP, the ortholog of retinoid X receptors in insects. J. Biol. Chem. 276, 7465–7474.PubMedCrossRefGoogle Scholar
  6. Billas, I.M.L., Iwema, T., Garnier, J.M., Mitschler, A., Rochel, N., and Moras, D. (2003). Structural adaptability in the ligand-binding pocket of the ecdysone hormone receptor. Nature 426, 91–96.PubMedCrossRefGoogle Scholar
  7. Bonneton, F., Zelus, D., Iwema, T., Robinson-Rechavi, M., and Laudet, V. (2003). Rapid divergence of the ecdysone receptor in Diptera and Lepidoptera suggests coevolution between ECR and USP-RXR. Mol. Biol. Evol. 20, 541–553.PubMedCrossRefGoogle Scholar
  8. Bonneton, F., Brunet, F.G., Kathirithamby, J., and Laudet, V. (2006). The rapid divergence of the ecdysone receptor is a synapomorphy for Mecopterida that clarifies the Strepsiptera problem. Insect Mol. Biol. 15, 351–362.PubMedCrossRefGoogle Scholar
  9. Bourguet, W., Vivat, V., Wurtz, J.-M., Chambon, P., Gronemeyer, H., and Moras, D. (2000). Crystal structure of a heterodimeric complex of RAR and RXR ligand-binding domains. Mol. Cell 5, 289–298.PubMedCrossRefGoogle Scholar
  10. Browning, C., Martin, E., Loch, C., Wurtz, J.M., Moras, D., Stote, R.H., Dejaegere, A.P., and Billas, I.M.L., (2007). Critical role of desolvation in the binding of 20-hydroxyecdysone to the ecdysone receptor. J. Biol. Chem. 282, 32924–32934.PubMedCrossRefGoogle Scholar
  11. Brzozowski, A.M., Pike, A.C.W., Dauter, Z., Hubbard, R.E., Bonn, T., Engström, O.,–00D6;hman, L., Greene, G.L., Gustafsson, J.-A., and Carlquist, M. (1997). Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389, 753–758.PubMedCrossRefGoogle Scholar
  12. Carmichael, J.A., Lawrence, M.C., Graham, L.D., Pilling, P.A., Epa, V.C., Noyce, L., Lovrecz, G., Winkler, D.A., Pawlak-Skrzecz, A., Eaton, R.E., Hannan, G.N., and Hill, RJ. (2005). The X-ray structure of a hemipteran ecdysone receptor ligand-binding domain: Comparison with a lepidopteran ecdysone receptor ligand-binding domain and implications for insecticide design. J. Biol. Chem. 280, 22258–22269.PubMedCrossRefGoogle Scholar
  13. Cherbas, L., Hu, X., Zhimulev, I., Belyaeva, E., and Cherbas, P. (2003). EcR isoforms in Drosophila: Testing tissue-specific requirements by targeted blockade and rescue. Development 130, 271–284.PubMedCrossRefGoogle Scholar
  14. Christopherson, K.S., Mark, M.R., Bajaj, V., and Godowski, P.J. (1992). Ecdysteroid-dependent regulation of genes in mammalian cells by a Drosophila ecdysone receptor and chimeric trans-activators. Proc. Natl. Acad. Sci. USA 89, 6314–6318.PubMedCrossRefGoogle Scholar
  15. Clayton, G.M., Peak-Chew, S.Y., Evans, R.M., and Schwabe, J.W.R. (2001). The structure of the ultraspiracle ligand-binding domain reveals a nuclear receptor locked in an inactive conformation. Proc. Natl. Acad. Sci. USA 98, 1549–1554.PubMedCrossRefGoogle Scholar
  16. De Groot, A., De Rosny, E., Juillan-Binard, C, Ferrer, J.L., Laudet, V., Pierce, RJ., Pebay-Peyroula, E., Fontecilla-Camps, J.C., and Borel, F. (2005). Crystal structure of a novel tetra-meric complex of agonist-bound ligand-binding domain of Biomphalaria glabrata Retinoid X Receptor. J. Mol. Biol. 354, 841–853.PubMedCrossRefGoogle Scholar
  17. Dhadialla, T.S., Carlson, G.R., and Le, D.P. (1998). New insecticides with ecdysteroidal and juvenile hormone activity. Annu. Rev. Entomol. 43, 545–569.PubMedCrossRefGoogle Scholar
  18. Egea, P.F., Mitschler, A., Rochel, N, Ruff, M., Chambon, P., and Moras, D. (2000). Crystal structure of the human RXRα ligand-binding domain bound to its natural ligand 9-cis retinoic acid. EMBO J. 19, 2592–2601.PubMedCrossRefGoogle Scholar
  19. Emmerich, H. (1972). Ecdysone binding proteins in nuclei and chromatin from Drosophila salivary glands. Gen. Comp. Endocr. 19, 543–551.PubMedCrossRefGoogle Scholar
  20. Färnegårdh, M., Bonn, T, Sun, S., Ljunggren, J., Ahola, H., Wilhelmsson, A., Gustafsson, J.-Å., and Carlquist, M. (2003). The three dimensional structure of the liver X receptor ß reveals a flexible ligand binding pocket that can accommodate fundamentally different ligands. J. Biol. Chem. 278, 38821–38828.PubMedCrossRefGoogle Scholar
  21. Fenn, T.D., Ringe, D., and Petsko, GA. (2003). POVScript+ : A program for model and data visualization using persistence of vision ray-tracing. J. Appl. Cryst. 36, 944–947.CrossRefGoogle Scholar
  22. Gampe, R.T., Jr., Montana, V.G., Lambert, M.H., Miller, A.B., Bledsoe, R.K., Milburn, M.V., Kliewer, S.A., Willson, T.M., and Xu, H.E. (2000). Asymmetry in the PPARγ/RXRα crystal structure reveals the molecular basis of heterodimerization among nuclear receptors. Mol. Cell 5, 545–555.PubMedCrossRefGoogle Scholar
  23. Graham, L.D., Johnson, W.M., Pawlak-Skrzecz, A., Eaton, R.E., Bliese, M., Howell, L., Hannan, G.N., and Hill, RJ. (2007). Ligand binding by recombinant domains from insect ecdysone receptors. Insect Biochem. Mol. Biol. 37, 611–626.PubMedCrossRefGoogle Scholar
  24. Hormann, R.E., and Chortyk, O. (2004). New oxadiazoline ligands for regulating expression of nuclear receptor-based inducible genes in genetic engineering. Patent Number US2004171651-A1.Google Scholar
  25. Hu, X., Cherbas, L., and Cherbas, P. (2003). Transcription activation by the ecdysone receptor (EcR/USP): Identification of activation functions. Mol. Endocrinol. 17, 716–731.PubMedCrossRefGoogle Scholar
  26. Iwema, T, Billas, I.M.L., Beck, Y., Bonneton, F, Nierengarten, H, Chaumot, A., Richards, G., Laudet, V., and Moras, D. (2007). Structural and functional characterization of a novel type of lignad-independent RXR-USP receptor. EMBO J. 26, 3770–3782.PubMedCrossRefGoogle Scholar
  27. Jones, G., and Sharp, PA. (1997). Ultraspiracle: An invertebrate nuclear receptor for juvenile hormones. Proc. Natl. Acad. Sci. USA 94, 13499–13503.PubMedCrossRefGoogle Scholar
  28. Jones, G., Wozniak, M., Chu, Y., Dhar, S., and Jones, D. (2002). Juvenile hormone III-dependent conformational changes of the nuclear receptor ultraspiracle. Insect Biochem. Mol. Biol. 32, 33–49.CrossRefGoogle Scholar
  29. Jones, G, Jones, D.E., Teal, P., Sapa, A.. and Wozniak, M. (2006). The retinoid-X receptor ortholog, ultraspiracle, binds with nanomolar affinity to an endogenous morphogenetic ligand FEBS J. 273, 4983–4996.PubMedCrossRefGoogle Scholar
  30. Kasuya, K., Sawada, Y., Tsukamoto, Y., Tanaka, K., Toya, T., and Yanagi, M. (2003). Binding mode of ecdysone agonists to the receptor: Comparative modeling and docking studies. J. Mol. Model 9, 58–65.PubMedGoogle Scholar
  31. Kleywegt, G.J., and Jones, T.A. (1994a). Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallogr. D. 50, 178–185.CrossRefGoogle Scholar
  32. Kleywegt G.J., and Jones T.A. (1994b). Halloween … Masks and Bones. In “From First Map to Final Model”, edited by S. Bailey, R. Hubbard and D. Waller. SERC Daresbury Laboratory, Warrington, pp. 59–66.Google Scholar
  33. Koelle, M.R., Talbot, W.S., Segraves, W.A., Bender, M.T., Cherbas, P., and Hogness, D.S. (1991). The Drosophila EcR gene encodes an ecdysone receptor, a new member of the steroid receptor superfamily. Cell 67, 59–77.PubMedCrossRefGoogle Scholar
  34. Krylova, I.N., Sablin, E.P., Moore, J., Xu, R.X., Waitt, G.M., MacKay, J.A., Juzumiene, D., Bynum, J.M., Madauss, K., Montana, V., Lebedeva, L., Suzawa, M., Williams, J.D., Williams, S.P., Guy, R.K., Thornton, J.W., Fletterick, R.J., Willson, T.M., and Ingraham, H.A. (2005). Structural analyses reveal phosphatidyl inositols as ligands for the NR5 orphan receptors SF-1 and LRH-1. Cell 120, 343–355.PubMedCrossRefGoogle Scholar
  35. Kumar, M.B., Fujimoto, T., Potter, D.W., Deng, Q., and Palli, S.R. (2002). A single point mutation in ecdysone receptor leads to increased ligand specificity: Implications for gene switch applications. Proc. Natl. Acad. Sci. USA 99, 14710–14715.PubMedCrossRefGoogle Scholar
  36. Kumar, M.B., Potter, D.W., Horman, R.E., Edwards, A., Tice, C.M., Smith, H.C., Dipietro, M.A., Polley, M., Lawless, M., Wolohan, P.R.N., Kethidi, D.R., and Palli, S.R. (2004). Highly flexible ligand-binding pocket of ecdysone receptor: A single amino acid change leads to discrimination between two groups of nonsteroidal ecdysone agonists. J. Biol. Chem. 279, 27211–27218.PubMedCrossRefGoogle Scholar
  37. Landon, T.M., Sage, B.A., Seeler, B.J., and O'Connor, J.D. (1988). Characterization and partial purification of the Drosophila Kc cell ecdysteroid receptor. J. Biol. Chem. 263, 4693–4697.PubMedGoogle Scholar
  38. Luo, Y., Amin, J., and Voellmy, R. (1991). Ecdysone receptor is a sequence-specific transcription factor involved in the developmental regulation of heat shock genes. Mol. Cell Biol. 11, 3660–36675.PubMedGoogle Scholar
  39. Moras, D., and Gronemeyer, H. (1998). The nuclear receptor ligand-binding domain: Structure and function. Curr. Opin. Cell Biol. 10, 384–391.PubMedCrossRefGoogle Scholar
  40. Nettles, K.W., Bruning, J.B., Gil, G., O'Neill, E.E., Nowak, J., Hughs, A., Kim, Y., Desombre, E.R., Dilis, R., Hanson, R.N., Joachimiak, A., and Greene, G.L. (2007). Structural plasticity in the oestrogen receptor ligand-binding domain. EMBO Rep. 8, 563–568. Erratum: Nettles et al. (2007). EMBO Rep. 8, 610.PubMedCrossRefGoogle Scholar
  41. Palli, S.R., Kapitskaya, M.Z., Kumar, M.B., and Cress, D.E. (2003). Improved ecdysone receptor-based inducible gene regulation system. Eur. J. Biochem. 270, 1308–1315.PubMedCrossRefGoogle Scholar
  42. Peck, A.L. (1970). trans., Aristotle, Historia Animalium BookV:XIX (Harvard University Press, Cambridge).Google Scholar
  43. Philippsen, A. (2000). DINO: Visualizing Structural Biology.
  44. Rochel, N., Wurtz, J.-M., Mitschler, A., Klaholz, B.P., and Moras, D. (2000). The crystal structure of the nuclear receptor of vitamin D bound to its natural ligand. Mol. Cell 5, 173–179.PubMedCrossRefGoogle Scholar
  45. Shan, L., Vincent, J., Brunzelle, J.S., Dussault, I., Lin, M., Ianculescu, I., Sherman, M.A., Forman, B.M., and Fernandez, E.J. (2004). Structure of the murine constitutive androstane receptor com-plexed to androstenol: A molecular basis for inverse agonism. Mol. Cell 16, 907–917.PubMedGoogle Scholar
  46. Smith, H.C., Cavanaugh, C.K., Friz, J.L., Thompson, C.S., Saggers, J.A., Michelotti, E.L., Garcia, J., and Tice, C.M. (2003). Synthesis and SAR of cis-1-benzoyl-1,2,3,4-tetrahydroqui-noline ligands for control of gene expression in ecdysone responsive systems. Bioorg. Med. Chem. Lett. 13, 1943–1946.PubMedCrossRefGoogle Scholar
  47. Suino, K., Peng, L., Reynolds, R., Li, Y., Cha, J.Y., Repa, J.J., Kliewer, S.A., and Xu, H.E. (2004). The nuclear xenobiotic receptor CAR: Structural determinants of constitutive activation and heterodimerization. Mol. Cell 16, 893–905.PubMedGoogle Scholar
  48. Svensson, S., Östberg, T., Jacobsson, M., Norström, C., Stefansson, K., Hallén, D., Johansson, I.C., Zachrisson, K., Ogg, D., and Jendeberg, L. (2003). Crystal structure of the heterodimericcomplex of LXRα and RXRß ligand-binding domains in a fully agonistic conformation. EMBO J. 22, 4625–4633.PubMedCrossRefGoogle Scholar
  49. Thomas, H.E., Stunnenberg, H.G., and Stewart, A.F. (1993). Heterodimerization of the Drosophila ecdysone receptor with retinoid X receptor and ultraspiracle. Nature 362, 471–475.PubMedCrossRefGoogle Scholar
  50. Togashi, M., Borngraeber, S., Sandler, B., Fletterick, R.J., Webb, P., and Baxter, J.D. (2005). Conformational adaptation of nuclear receptor ligand binding domains to agonists: Potential for novel approaches to ligand design. J. Steroid Biochem. Mol. Biol. 93, 127–137.PubMedCrossRefGoogle Scholar
  51. Unger, E., Cigan, A.M., Trimnell, M., Xu, R.J., Kendall, T., Roth, B., and Albertsen, M. (2002). A chimeric ecdysone receptor facilitates methoxyfenozide-dependent restoration of male fertility in ms45 maize. Transgenic Res. 11, 455–465.PubMedCrossRefGoogle Scholar
  52. Wing, K.D. (1988). RH5849, a nonsteroidal ecdysone agonist: Effects on a Drosophila cell line. Science 241, 467–469.PubMedCrossRefGoogle Scholar
  53. Wurtz, J.-M., Guillot, B., Fagart, J., Moras, D., Tietjen, K., and Schindler, M. (2000). A new model for 20E and dibenzoylhydrazine binding: A homology modeling and docking approach. Protein Sci. 9, 1073–1084.PubMedCrossRefGoogle Scholar
  54. Xu, R.X., Lambert, M.H., Wisely, B.B., Warren, E.N., Weinert, E.E., Waitt, G.M., Williams, J.D., Collins, J.L., Moore, L.B., Willson, T.M., and Moore, J.T. (2004). A structural basis for constitutive activity in the human CAR/RXRα heterodimer. Mol. Cell 16, 919–928.PubMedCrossRefGoogle Scholar
  55. Xu, Y., Fang, F., Chu, Y., Jones, D., and Jones, G. (2002). Activation of transcription through the ligand-binding pocket of the orphan nuclear receptor ultraspiracle. Eur. J. Biochem. 269, 6026–6036.PubMedCrossRefGoogle Scholar
  56. Yang, G., Hannan, G.N., Lockett, T.J., and Hill, R.J. (1995). Functional transfer of an elementary ecdysone gene regulatory system to mammalian cells: Transient transfections and stable cell lines. Eur. J. Entomol. 92, 379–389.Google Scholar
  57. Yao, T.-P., Forman, B.M., Jiang, Z., Cherbas, L., Chen, J.-D., McKeown, M., Cherbas, P., and Evans, R.M. (1993). Functional ecdysone receptor is the product of EcR and ultraspiracle genes. Nature 366, 476–479.PubMedCrossRefGoogle Scholar
  58. Yund, M.A., King, D.S., and Fristrom, J.W. (1978). Ecdysteroid receptors in imaginal discs of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 75, 6039–6043.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  • Isabelle M. L. Billas
    • 1
    • 2
    • 3
  • Christopher Browning
    • 1
    • 2
    • 3
  • Michael C. Lawrence
    • 4
  • Lloyd D. Graham
    • 5
  • Dino Moras
    • 1
    • 2
    • 3
  • Ronald J. Hill
    • 5
  1. 1.Département de Biologie et de Génomique StructuralesIGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire)IllkirchFrance
  2. 2.INSERM, U596IllkirchFrance
  3. 3.CNRS, UMR7104IllkirchFrance
  4. 4.Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
  5. 5.CSIRO Molecular and Health TechnologiesNorth RydeAustralia

Personalised recommendations