Sex Ratio Modulators of Egg Parasitoids

Part of the Progress in Biological Control book series (PIBC, volume 9)


The importance of sex ratio s in the biology and biocontrol application of egg parasitoids can be summarized as the cost of producing males. For both the biocontrol practitioner and the biocontrol agent a surplus of healthy fecund females is highly desirable. The sex ratio investment advice of a biological banker might be to maximize the total number of reproductive females and minimize the number of males. In this chapter we will describe two inherited genetic element s found in several Trichogramma species that can be considered either excellent or terrible investment options. These non-Mendelian genetic elements effectively distort offspring sex ratios in a manner that can be called selfish- since both promote their own transmission at the expense of host nuclear genes. One, a bacterium called Wolbachia can convert haplodiploid females into fully functional completely parthenogenetic organisms (Stouthamer et al. 1993). In fact, several Wolbachia infected species are only known from parthenogenetic females- few or no males are found (Huigens and Stouthamer 2003). The other, a nuclear “extra” chromosome called PSR (Paternal Sex Ratio) found only in male haplodiploids behaves in a manner that can only be described as extremely selfish. The PSR chromosome turns eggs destined to develop as females into males that carry the PSR chromosome (Werren and Stouthamer 2003). These two sex ratio distorters have opposite but sometimes complimentary consequences in parasitoid populations. We will discuss the biology and applied potential of both these sex ratio distorters in Trichogramma species.


Wolbachia Infection Infected Female Local Mate Competition Trichogramma Species Trichogramma Pretiosum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arakaki N, Miyoshi T, Noda H (2001) Wolbachia-mediated parthenogenesis in the predatory thrips Franklinothrips vespiformis (Thysanoptera: Insecta). Proc R Soc Biol Sci 268B:1011–1016CrossRefGoogle Scholar
  2. Barton NH, Charlesworth B (1998) Why sex and recombination? Science 281:1986–1990PubMedCrossRefGoogle Scholar
  3. Beukeboom LW, Werren JH (1993) Transmission and expression of the parasitic paternal sex ratio (PSR) chromosome. Heredity 70:437–443CrossRefGoogle Scholar
  4. Beukeboom LW, Werren JH (2000) The paternal-sex-ratio (PSR) chromosome in natural populations of Nasonia (Hymenoptera: Chalcidoidea). J Evol Biol 13:967–975CrossRefGoogle Scholar
  5. Binnington KC, Hoffmann AA (1989) Wolbachia-like organisms and cytoplasmic incompatibility in Drosophila simulans. J Invertebr Pathol 54:344–352CrossRefGoogle Scholar
  6. Braig HR, Yan G (2002) The spread of genetic constructs in natural insect populations. In: Letourneau DK, Burrows BE (eds) Genetically engineered organisms: assessing environmental and human health effects. CRC, Boca Raton, pp 251–314Google Scholar
  7. Breeuwer JAJ, Werren JH (1990) Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature 346:558–560PubMedCrossRefGoogle Scholar
  8. Charnov EL (1982) The theory of sex allocation. Princeton University Press, PrincetonGoogle Scholar
  9. Charnov EL, Los-den Hartogh RL, Jones WT, van den Assem J (1981) Sex ratio evolution in a variable environment. Nature 289:27–33PubMedCrossRefGoogle Scholar
  10. Colwell RK (1981) Group selection is implicated in the evolution of female-biased sex-ratios. Nature 290:401–404CrossRefGoogle Scholar
  11. Cook JM (1993) Sex determination in the Hymenoptera – a review of models and evidence. Heredity 71:421–435CrossRefGoogle Scholar
  12. Darwin C (1871) The descent of man and selection in relation to sex. John Murray, LondonCrossRefGoogle Scholar
  13. Dobson SL, Tanouye MA (1998) Interspecific movement of the paternal sex ratio chromosome. Heredity 81:261–269PubMedCrossRefGoogle Scholar
  14. Düsing C (1884) Die Regulierung des Geschlectsverhaltnisses bei der Vermehrung der Menschen, Tiere und Pflanzen. Gustav Fischer Verlag, JenaGoogle Scholar
  15. Eickbush DG, Eickbush TH, Werren JH (1992) Molecular characterization of repetitive DNA sequences from a B chromosome. Chromosoma 101:575–583PubMedCrossRefGoogle Scholar
  16. Fisher RA (1930) The genetical theory of natural selection. Oxford University Press, OxfordGoogle Scholar
  17. Gherna RL, Werren JH, Weisburg W, Cote R, Woese CR, Mandelco L, Brenner DJ (1991) Arsenophonus nasoniae gen-nov, sp-nov, the causative agent of the son-killer trait in the parasitic wasp Nasonia vitripennis. Int J Syst Bacteriol 41:563–565CrossRefGoogle Scholar
  18. Godfray HCJ (1990) The causes and consequences of constrained sex allocation in haplodiploid animals. J Evol Biol 3:3–17CrossRefGoogle Scholar
  19. Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University Press, PrincetonGoogle Scholar
  20. Godfray HCJ, Waage JK (1990) The evolution of highly skewed sex-ratios in aphelinid wasps. Am Nat 136:715–721CrossRefGoogle Scholar
  21. Gonçalves CI, Huigens ME, Verbaarschot P, Duarte S, Mexia A, Tavares J (2006) Natural occurrence of Wolbachia-infected and uninfected Trichogramma species in tomato fields in Portugal. Biol Control 37:375–381CrossRefGoogle Scholar
  22. Gottlieb Y, Zchori-Fein E, Werren JH, Karr TL (2002) Diploidy restoration in Wolbachia-infected Muscidifurax uniraptor (Hymenoptera:Pteromalidae). J Invertebr Pathol 81:166–174PubMedCrossRefGoogle Scholar
  23. Grbic M, Ode PJ, Strand MR (1992) Sibling rivalry and brood sex-ratios in polyembryonic wasps. Nature 360:254–256CrossRefGoogle Scholar
  24. Hagimori T, Abe Y, Date S, Miura K (2006) The first finding of a Rickettsia bacterium associated with parthenogenesis induction among insects. Curr Microbiol 52:97–101PubMedCrossRefGoogle Scholar
  25. Hamilton WD (1967) Extraordinary sex ratios. Science 156:477–488PubMedCrossRefGoogle Scholar
  26. Hardy ICW, Ode PJ, Strand MR (1993) Factors influencing brood sex-ratios in polyembryonic Hymenoptera. Oecologia 93:343–348CrossRefGoogle Scholar
  27. Henter HJ (2004) Constrained sex allocation in a parasitoid due to variation in male quality. J Evol Biol 17:886–896PubMedCrossRefGoogle Scholar
  28. Herre EA (1985) Sex-ratio adjustment in fig wasps. Science 228:896–898PubMedCrossRefGoogle Scholar
  29. Hohmann CL, Luck RF (2000) Effect of temperature on the development and thermal requirements of Wolbachia-infected and antibiotically cured Trichogramma kaykai Pinto and Stouthamer (Hymenoptera:Trichogrammatidae). Ann Soc Entomol Brasil 29:497–505CrossRefGoogle Scholar
  30. Huigens ME (2003) On the evolution of Wolbachia-induced parthenogenesis in Trichogramma wasps. Entomology. Wageningen University, Netherlands, Wageningen, 183pGoogle Scholar
  31. Huigens ME, Stouthamer R (2003) Parthenogenesis associated with Wolbachia. In: Bourtzis K, Miller TA (eds) Insect symbiosis. CRC, Boca Raton, pp 247–266Google Scholar
  32. Huigens ME, de Almeida RP, Boons PAH, Luck RF, Stouthamer R (2004a) Natural interspecific and intraspecific horizontal transfer of parthenogenesis-inducing Wolbachia in Trichogramma wasps. Proc R Soc Lond 271B:509–515CrossRefGoogle Scholar
  33. Huigens ME, Hohmann CL, Luck RF, Gort G, Stouthamer R (2004b) Reduced competitive ability due to Wolbachia infection in the parasitoid wasp Trichogramma kaykai. Entomol Exp Appl 110:115–123CrossRefGoogle Scholar
  34. Huigens ME, Luck RF, Klaassen RHG, Maas MFPM, Timmermans MJTN, Stouthamer R (2000) Infectious parthenogenesis. Nature 405:178–179PubMedCrossRefGoogle Scholar
  35. Hunter MS, Nur U, Werren JH (1993) Origin of males by genome loss in an autoparasitoid wasp. Heredity 70:162–171CrossRefGoogle Scholar
  36. Hurst GDD, Werren JH (2001) The role of selfish genetic elements in eukaryotic evolution. Nat Rev Genet 2:597–606PubMedCrossRefGoogle Scholar
  37. Hurst GDD, Hurst LD, Majerus MEN (1997) Cytoplasmic sex ratio distorters. In: O’Neill S, Hoffman AA, Werren JH (eds) Influential passengers: inherited microorganisms and arthropod reproduction. Oxford University Press, Oxford, pp 125–154Google Scholar
  38. Jaenike J (2001) Sex chromosome meiotic drive. Annu Rev Ecol Systemat 32:25–49CrossRefGoogle Scholar
  39. Jeong G, Stouthamer R (2005) Genetics of female functional virginity in the parthenogenesis Wolbachia-infected parasitoid wasp Telenomus nawai (Hymenoptera: Scelionidae). Heredity 94:402–407PubMedCrossRefGoogle Scholar
  40. Jeong G, Stouthamer R (2006) Influence of postzygotic reproductive isolation on the interspecific transmission of the paternal sex ratio chromosome in Trichogramma. Entomol Exp Appl 120:33–40CrossRefGoogle Scholar
  41. Judson OP, Normark BB (1996) Ancient asexual scandals. Trends Ecol Evol 11:A41–A46CrossRefGoogle Scholar
  42. King BH, Skinner SW (1991) Sex-ratio in a new species of Nasonia with fully-winged males. Evolution 45:225–228CrossRefGoogle Scholar
  43. Luck RF, Stouthamer R, Nunney L (1992) Sex determination and sex ratio patterns in parasitic Hymenoptera. In: Wrench NDL, Ebbert MA (eds), Evolution and diversity of sex ratio in haplodiploid insects and mites. Chapman & Hall, New York, pp 442–476Google Scholar
  44. Luck RF, Janssen JAM, Pinto JD, Oatman ER (2001) Precise sex allocation, local mate competition, and sex ratio shifts in the parasitoid wasp Trichogramma pretiosum. Behav Ecol Sociobiol 49:311–321CrossRefGoogle Scholar
  45. Muller HJ (1932) Some genetic aspects of sex. Am Nat 66:118–138CrossRefGoogle Scholar
  46. Nunney L (1985) Female-biased sex-ratios – individual or group selection. Evolution 39:349–361CrossRefGoogle Scholar
  47. Pannebakker BA, Pijnacker LP, Zwaan BJ, Beukeboom LW (2004) Cytology of Wolbachia-induced parthenogenesis in Leptopilina clavipes (Hymenoptera: Figitidae). Genome 47:299–303PubMedCrossRefGoogle Scholar
  48. Pannebakker BA, Schidlo NS, Boskamp GJF, Dekker L, van Dooren TJM, Beukeboom LW, Zwaan BJ, Brakefield PM, van Alphen JJM (2005) Sexual functionality of Leptopilina clavipes (Hymenoptera:Figitidae) after reversing Wolbachia-induced parthenogenesis. J Evol Biol 18:1019–1028PubMedCrossRefGoogle Scholar
  49. Perrot-Minnot MJ, Werren JH (2001) Meiotic and mitotic instability of two EMS-produced centric fragments in the haplodiploid wasp Nasonia vitripennis. Heredity 87:8–16PubMedCrossRefGoogle Scholar
  50. Pijls JWAM, van Steenbergen HJ, van Alphen JJM (1996) Asexuality cured: the relations and differences between sexual and asexual Apoanagyrus diversicornis. Heredity 76:506–513CrossRefGoogle Scholar
  51. Queller DC (2006) Sex ratios and social evolution. Curr Biol 16:R664–R668PubMedCrossRefGoogle Scholar
  52. Reed KM, Beukeboom LW, Eickbush DH, Werren JH (1994) Junctions between repetitive DNAs on the PSR chromosome of Nasonia vitripennis: Association of palindromes with recombination. J Mol Evol 38:352–362PubMedCrossRefGoogle Scholar
  53. Rigaud T (1997) Inherited microorganisms and sex determination of arthropod hosts. In: O’Neill S, Hoffman AA, Werren JH (eds) Influential passengers: inherited microorganisms and arthropod reproduction. Oxford University Press, Oxford, pp 81–101Google Scholar
  54. Rousset F, Vautrin D, Solignac M (1992) Molecular identification of Wolbachia, the agent of cytoplasmic incompatibility in Drosophila simulans and variability in relation with host mitochondrial types. Proc R Soc Lond 247B:163–168CrossRefGoogle Scholar
  55. Santolamazza-Carbone S, Nieto MP, Rivera AC (2007) Maternal size and age affect offspring sex ratio in the solitary egg parasitoid Anaphes nitens. Entomol Exp Appl 125:23–32CrossRefGoogle Scholar
  56. Segar J, Stubblefield JW (2002) Models of sex ratio evolution. In: Hardy ICW (ed) Sex ratios: concepts and research methods. Cambridge University Press, Cambridge, pp 2–25CrossRefGoogle Scholar
  57. Shuker DM, Pen I, Duncan AB, Reece SE, West SA (2005) Sex ratios under asymmetrical local mate competition: theory and a test with parasitoid wasps. Am Nat 166:301–316PubMedCrossRefGoogle Scholar
  58. Silva IMMS, van Meer MMM, Roskam MM, Hoogenboom A, Gort G, Stouthamer R (2000) Biological control potential of Wolbachia-infected versus uninfected wasps: laboratory and greenhouse evaluation of Trichogramma cordubensis and T. deion strains. Biocontrol Sci Technol 10:223–238CrossRefGoogle Scholar
  59. Skinner SW (1982) Maternally inherited sex-ratio in the parasitoid wasp Nasonia vitripennis. Science 215:1133–1134PubMedCrossRefGoogle Scholar
  60. Skinner SW (1987) Paternal transmission of an extrachromosomal factor in a wasp – evolutionary implications. Heredity 59:47–53PubMedCrossRefGoogle Scholar
  61. Stille B, Davring I (1980) Meiosis and reproductive strategy in the parthenogenetic gall wasp Diplolepis rosae (L) (Hymenoptera, Cynipidae). Hereditas 92:353–362CrossRefGoogle Scholar
  62. Stouthamer R (1993) The use of sexual versus asexual wasps in biological control. Entomophaga 38:3–6CrossRefGoogle Scholar
  63. Stouthamer R (1997) Wolbachia-induced parthenogenesis. In: O’Neill S, Hoffman AA, Werren JH (eds) Influential passengers: inherited microorganisms and arthropod reproduction. Oxford University Press, Oxford, pp 102–124Google Scholar
  64. Stouthamer R (2003) The use of unisexual wasps in biological control. In: van Lenteren JC (ed) Quality control and production of biological control agents: theory and testing procedures. CAB International, London, pp 93–113CrossRefGoogle Scholar
  65. Stouthamer R (2004) Sex-ratio distorters and other selfish genetic elements: Implications for biological control. In: Ehler RSL, Mateille T (eds) Genetics, evolution and biological control. CABI Publishing, Wallingford, UK, pp 235–252CrossRefGoogle Scholar
  66. Stouthamer R, Kazmer DJ (1994) Cytogenetics of microbe-associated parthenogenesis and its consequences for gene flow in Trichogramma wasps. Heredity 73:317–327CrossRefGoogle Scholar
  67. Stouthamer R, Luck RF (1993) Influence of microbe-associated parthenogenesis on the fecundity of Trichogramma deion and T. pretiosum. Entomol Exp Appl 67:183–192CrossRefGoogle Scholar
  68. Stouthamer R, Luck RF, Hamilton WD (1990) Antibiotics cause parthenogenetic Trichogramma (Hymenoptera, Trichogrammatidae) to revert to sex. Proc Natl Acad Sci USA 87:2424–2427PubMedCrossRefGoogle Scholar
  69. Stouthamer R, Breeuwer JAJ, Hurst GDD (1999) Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol 53:71–102PubMedCrossRefGoogle Scholar
  70. Stouthamer R, van Tilborg M, de Jong JH, Nunney L, Luck RF (2001) Selfish element maintains sex in natural populations of a parasitoid wasp. Proc R Soc 268B:617–622Google Scholar
  71. Strand MR (1988) Variable sex-ratio strategy of Telenomus heliothidis (Hymenoptera, Scelionidae) – adaptation to host and conspecific density. Oecologia 77:219–224CrossRefGoogle Scholar
  72. Strand MR (1989a) Clutch size, sex-ratio and mating by the polyembryonic encyrtid Copidosoma floridanum (Hymenoptera, Encyrtidae). Florida Entomol 72:32–42CrossRefGoogle Scholar
  73. Strand MR (1989b) Development of the polyembryonic parasitoid Copidosoma floridanum in Trichoplusia ni. Entomol Exp Appl 50:37–46CrossRefGoogle Scholar
  74. Suomalainen E, Saura A, Lokki J (1987) Cytology and evolution in parthenogenesis. CRC, Boca RatonGoogle Scholar
  75. Suzuki Y, Iwasa Y (1980) A sex ratio theory of gregarious parasitoids. Res Popul Biol 22:366–382CrossRefGoogle Scholar
  76. Suzuki Y, Tsuji H, Sasakawa M (1984) Sex allocation and effects of superparasitism on secondary sex-ratios in the gregarious parasitoid, Trichogramma chilonis (Hymenoptera, Trichogrammatidae). Anim Behav 32:478–484CrossRefGoogle Scholar
  77. Tagami Y, Miura K, Stouthamer R (2001) How does infection with parthenogenesis-inducing Wolbachia reduce the fitness of Trichogramma? J Invertebr Pathol 78:267–271PubMedCrossRefGoogle Scholar
  78. Tagami Y, Miura K, Stouthamer R (2002) Positive effect of fertilization on the survival rate of immature stages in a Wolbachia-associated thelytokous line of Trichogramma deion and T. kaykai. Entomol Exp Appl 105:165–167CrossRefGoogle Scholar
  79. Taylor PD, Bulmer MG (1980) Local mate competition and the sex-ratio. J Theor Biol 86:409–419PubMedCrossRefGoogle Scholar
  80. Timberlake PH, Clausen CP (1924) The parasites of Pseudococcus maritimus in California. Univ Calif Publ Tech Bull Entomol 3:223–292Google Scholar
  81. van Vugt JFA, Salverda M, de Jong JH, Stouthamer R (2003) The paternal sex ratio chromosome in the parasitic wasp Trichogramma kaykai condenses the paternal chromosomes into a dense chromatin mass. Genome 46:580–587PubMedCrossRefGoogle Scholar
  82. van Vugt JJFA, de Nooijer S, Stouthamer R, de Jong J (2005) NOR activity and repeat sequences of the paternal sex ratio chromosome of the parasitoid wasp Trichogramma kaykai. Chromosoma 114:410–419PubMedCrossRefGoogle Scholar
  83. Vanwelzen CRL, Waage JK (1987) Adaptive responses to local mate competition by the parasitoid, Telenomus remus. Behav Ecol Sociobiol 21:359–365CrossRefGoogle Scholar
  84. Vavre F, de Jong JH, Stouthamer R (2004) Cytogenetic mechanism and genetic consequences of thelytoky in the wasp Trichogramma cacoeciae. Heredity 93:592–596PubMedCrossRefGoogle Scholar
  85. Waage JK (1982) Sib-mating and sex-ratio strategies in scelionid wasps. Ecol Entomol 7:103–112CrossRefGoogle Scholar
  86. Waage JK, Lane JA (1984) The reproductive strategy of a parasitic wasp. 2. Sex allocation and local mate competition in Trichogramma evanescens. J Anim Ecol 53:417–426CrossRefGoogle Scholar
  87. Waage JK, Ming NS (1984) The reproductive strategy of a parasitic wasp. 1. Optimal progeny and sex allocation in Trichogramma evanescens. J Anim Ecol 53:401–415CrossRefGoogle Scholar
  88. Weeks AR, Breeuwer JAJ (2001) Wolbachia-induced parthenogenesis in a genus of phytophagous mites. Proc R Soc 268B:2245–2251Google Scholar
  89. Werren JH (1983) Sex-ratio evolution under local mate competition in a parasitic wasp. Evolution 37:116–124CrossRefGoogle Scholar
  90. Werren JH, Beukeboom LW (1993) Population genetics of a parasitic chromosome: theoretical analysis of PSR in subdivided populations. Am Nat 142:224–241PubMedCrossRefGoogle Scholar
  91. Werren JH, Stouthamer R (2003) PSR (paternal sex ratio) chromosomes: the ultimate selfish genetic elements. Genetica 117:85–101PubMedCrossRefGoogle Scholar
  92. Werren JH, Hurst GDD, Zhang W, Breeuwer JAJ, Stouthamer R, Majerus MEN (1994) Rickettsial relative associated with male killing in the ladybird beetle (Adalia bipunctata). J Bacteriol 176:388–394PubMedGoogle Scholar
  93. Whiting PW (1943) Multiple alleles complementary sex determination of Habrobracon. Genetics 28:365–382PubMedGoogle Scholar
  94. Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, Brownlie JC, McGraw EA, Martin W, Esser C, Ahmadinejad N, Wiegand C, Madupu R, Beanan MJ, Brinkac LM, Daugherty SC, Durkin AS, Kolonay JF, Nelson WC, Mohamoud Y, Lee P, Berry K, Young MB, Utterback T, Weidman J, Nierman WC, Paulsen IT, Nelson KE, Tettelin H, O’Neill SL, Eisen JA (2004) Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: A streamlined genome overrun by mobile genetic elements. PLoS Biol 2:327–341CrossRefGoogle Scholar
  95. Yen JH, Barr AR (1973) The etiological agent of cytoplasmic incompatibility in Culex pipiens. J Invertebr Pathol 22:242–250PubMedCrossRefGoogle Scholar
  96. Zabalou S, Riegler M, Theodorakopoulou M, Stauffer C, Savakis C, Bourtzis K (2004) Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proc Natl Acad Sci USA 101:15042–15045PubMedCrossRefGoogle Scholar
  97. Zchori-Fein E, Perlman SJ, Kelly SE, Katzir N, Hunter MS (2004) Characterization of a ‘Bacteroidetes’ symbiont in Encarsia wasps (Hymenoptera:Aphelinidae): proposal of ‘Candidatus Cardinium hertigii’. Int J Syst Evol Microbiol 54:961–968PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of BiologyUniversity of CaliforniaRiversideUSA

Personalised recommendations