Advertisement

“No Information Without Disturbance”: Quantum Limitations of Measurement

  • Paul Busch
Part of the The Western Ontario Series in Philosophy of Science book series (WONS, volume 73)

In this contribution I review rigorous formulations of a variety of limitations of measurability in quantum mechanics. To this end I begin with a brief presentation of the conceptual tools of modern measurement theory. I will make precise the notion that quantum measurements necessarily alter the system under investigation and elucidate its connection with the complementarity and uncertainty principles.

Keywords

Uncertainty Relation Uncertainty Principle Quantum Limitation Measurement Scheme Joint Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Busch and A. Shimony. “Insolubility of the quantum measurement problem for unsharp observables.” Stud. Hist. Phil. Mod. Phys., 27:397–404, 1996.CrossRefMathSciNetGoogle Scholar
  2. 2.
    P. Busch, P.J. Lahti, and P. Mittelstaedt. The Quantum Theory of Measurement. Springer, Berlin, second revised edition, 1996.zbMATHGoogle Scholar
  3. 3.
    M. Ozawa. “Measurement breaking the standard quantum limit for free-mass position.” Phys. Rev. Lett., 60:385–388, 1988.CrossRefADSGoogle Scholar
  4. 4.
    M. Ozawa. “Position measuring interactions and the Heisenberg uncertainty principle.” Phys. Lett. A, 299:1–7, 2002.zbMATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    P. Busch. “The role of entanglement in quantum measurement and information processing.” Int. J. Theor. Phys., 42(5):937–941, 2003.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    N. Hadjisavvas. “Properties of mixtures of non-orthogonal states.” Lett. Math. Phys., 5:327– 332, 1981.CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    E.B. Davies and J.T. Lewis. “An operational approach to quantum probability.” Comm. Math. Phys., 17:239–260, 1970.zbMATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    M. Ozawa. “Quantum measuring processes of continuous observables.” J. Math. Phys., 25: 79–87, 1984.CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    A. Einstein, B. Podolsky, and N. Rosen. “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev., 47:777–780, 1935.zbMATHCrossRefADSGoogle Scholar
  10. 10.
    P. Busch and P. Lahti. “Some remarks on unsharp quantum measurements, quantum nonde-molition, and all that.” Ann. Phys., 47:369–382, 1990.CrossRefMathSciNetGoogle Scholar
  11. 11.
    C. Carmeli, T. Heinonen, and A. Toigo. “Intrinsic unsharpness and approximate repeatability of quantum measurements.” J. Phys. A, 40:1303–1323, 2007.zbMATHCrossRefMathSciNetADSGoogle Scholar
  12. 12.
    P. Busch. “Can quantum theoretical reality be considered sharp?” In P. Mittelstaedt and E.W. Stachow (eds.), Recent Developments in Quantum Logic. Bibliographisches Institut, Mannheim, pp. 81–101, 1985.Google Scholar
  13. 13.
    G. Lüders. “Über die Zustandsänderung durch den Meßprozeß.” Ann. Physik, 8:322–328, 1951.zbMATHMathSciNetGoogle Scholar
  14. 14.
    G. Lüders. “Concerning the state-change due to the measurement process.” Ann. Phys. (Leipzig), 15(9):663–670, 2006.zbMATHCrossRefADSGoogle Scholar
  15. 15.
    P. Busch and J. Singh. “Lüders theorem for unsharp quantum measurements.” Phys. Lett. A, 249:10–12, 1998.CrossRefADSGoogle Scholar
  16. 16.
    A. Arias, A. Gheondea, and S. Gudder. “Fixed points of quantum operations.” J. Math. Phys., 43(12):5872–5881, 2002.zbMATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    E.P. Wigner. “Die Messung quantenmechanischer Operatoren.” Z. Phys., 133:101–108, 1952.zbMATHCrossRefMathSciNetADSGoogle Scholar
  18. 18.
    P. Busch, M. Grabowski, and P.J. Lahti. Operational Quantum Physics. Springer, Berlin, second corrected printing, 1997.Google Scholar
  19. 19.
    A. Shimony and H. Stein. “A problem in Hilbert space theory arising from the quantum theory of measurement.” Am. Math. Mon., 86:292–293, 1979.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    M. Ozawa. “Does a conservation law limit position measurements?” Phys. Rev. Lett., 67(15): 1956–1959, 1991.zbMATHCrossRefMathSciNetADSGoogle Scholar
  21. 21.
    P. Busch. “Momentum conservation forbids sharp localisation.” J. Phys. A: Math. Gen., 18: 3351–3354, 1985.zbMATHCrossRefMathSciNetADSGoogle Scholar
  22. 22.
    P. Busch and C. Shilladay. “Complementarity and uncertainty in Mach–Zehnder interferome-try and beyond.” Phys. Rep., 435:1–31, 2006.CrossRefADSGoogle Scholar
  23. 23.
    P. Busch, T. Heinonen, and P.J. Lahti. “Heisenberg's uncertainty principle.” Phys. Rep., 452:155–176, 2007.CrossRefADSGoogle Scholar
  24. 24.
    N. Bohr. “The quantum postulate and the recent development of atomic theory.” Nature, 121: 580–590, 1928.CrossRefADSGoogle Scholar
  25. 25.
    P.J. Lahti and S. Bugajski. “Fundamental principles of quantum theory. II. From a convexity scheme to the DHB theory.” Int. J. Theor. Phys., 24:1051–1980, 1985.CrossRefMathSciNetGoogle Scholar
  26. 26.
    P. Busch and D.B. Pearson. “Inaccuracy and unsharpness in approximate joint measurements of position and momentum.” In preparation, 2008.Google Scholar
  27. 27.
    P. Busch and T. Heinosaari. “Approximate joint measurements of qubit observables.” Quantum Inf. & Comput. 8, 797–818, 2008.zbMATHMathSciNetGoogle Scholar
  28. 28.
    D.M. Appleby. “Concept of experimental accuracy and simultaneous measurements of position and momentum.” Int. J. Theor. Phys., 37:1491–1509, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    D.M. Appleby. “Error principle.” Int. J. Theor. Phys., 37:2557–2572, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    M.J.W. Hall. “Prior information: How to circumvent the standard joint-measurement uncertainty relation.” Phys. Rev. A, 69:052113/1–12, 2004.Google Scholar
  31. 31.
    M. Ozawa. “Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement.” Phys. Rev. A, 67:042105, 2003.CrossRefADSGoogle Scholar
  32. 32.
    M. Ozawa. “Uncertainty relations for noise and disturbance in generalized quantum measurements ” Ann. Phys. (N.Y.), 311:350–416, 2004.zbMATHCrossRefADSGoogle Scholar
  33. 33.
    A. Dvurečenskij, P. Lahti, and K. Ylinen. “Positive operator measures determined by their momentum sequences.” Rep. Math. Phys., 45:139–146, 2000.zbMATHCrossRefMathSciNetADSGoogle Scholar
  34. 34.
    R.F. Werner. “The uncertainty relation for joint measurement of position and momentum.” Qu. Inf. Comp., 4:546–562, 2004.zbMATHGoogle Scholar
  35. 35.
    P. Busch and D.B. Pearson. “Universal joint-measurement uncertainty relation for error bars.” J. Math. Phys., 48:082103, 2007.CrossRefMathSciNetADSGoogle Scholar
  36. 36.
    W. Heisenberg. “Ü ber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik.” Z. Phys., 43:172–198, 1927.CrossRefADSGoogle Scholar
  37. 37.
    W. Heisenberg. The Physical Principles of the Quantum Theory. University of Chicago Press, Chicago, 1930.zbMATHGoogle Scholar
  38. 38.
    E.B. Davies. “On the repeated measurements of continuous observables in quantum mechanics. ” J. Funct. Anal., 6:318–346, 1970.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2009

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of YorkYorkUK

Personalised recommendations