Advertisement

Large Amplitude Vibrations Of Noncircular Cylindrical Shells

  • S. M. Ibrahim
  • B. P. Patel
  • Y. NathEmail author
Part of the Springer Proceedings in Physics book series (SPPHY, volume 126)

The aim of this paper is to review the literature on the large amplitude vibration of circumferentially closed shells and to study the nonlinear forced response characteristics of noncircular cylindrical shells. The study is carried out using semi-analytical method with the meridional approximation of the displacement field as the superposition of the linear free vibration modal functions and the three noded quadratic finite element approximation in the circumferential direction. The Sander ' s type strain-displacement relations are used. The governing equations are solved using Newmark ' s time integration approach coupled with the Newton-Raphson iterative technique. The forced response curves in the frequency domain are obtained from the steady state dynamic response of the shells. Some of the interesting characteristics pertaining to the noncircular shells are highlighted.

Keyword

semi-analytical noncircular large amplitude forced response shell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. A. Evensen, 1974. Nonlinear vibrations of circular cylindrical shells, Thin-Shell Structures: Theory, Experiment and Design, YC Fung and EE Sechler (eds), Prentice Hall, Englewood Cliffs, NY, 133 – 155.Google Scholar
  2. 2.
    F. Moussaoui, R. Benamar, 2002. Nonlinear vibrations of shell-type structures: A review with bibliography, Journal of Sound and Vibration, 255, 161 – 184.CrossRefADSGoogle Scholar
  3. 3.
    M. Amabili, M. P. Paidoussis, 2003. Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid — structure interaction, Applied Mechanics Reviews, 56, 105 – 125.CrossRefGoogle Scholar
  4. 4.
    E. Reissner, 1955. Nonlinear effects in vibrations of cylindrical shells, Ramo Wooldridge Corporation Report AM 5–6. Google Scholar
  5. 5.
    H. N. Chu, 1961. Influence of large-amplitudes on flexural vibrations of a thin circular cylindrical shell, Journal of Aerospace Sciences, 28, 602 – 609.zbMATHGoogle Scholar
  6. 6.
    J. Nowinski, 1963. Nonlinear transverse vibrations of orthotropic cylindrical shells, AIAA Journal, 1, 617 – 620.CrossRefGoogle Scholar
  7. 7.
    B. E. Cummings, 1964. Large-amplitude vibration and response of curved panels, AIAA Journal, 2, 709 – 716.CrossRefGoogle Scholar
  8. 8.
    D. A. Evensen, 1963. Some observations on the nonlinear vibration of thin cylindrical shells, AIAA Journal, 1, 2857 – 2858.CrossRefGoogle Scholar
  9. 9.
    D. A. Evensen, 1966. Nonlinear flexural vibrations of thin circular rings, ASME Journal of Applied Mechanics, 33, 553 – 560.Google Scholar
  10. 10.
    D. A. Evensen, E. Fulton, 1967. Some studies on the nonlinear dynamic response of shell-type structures, Proceedings of the International Conference on Dynamic Stability of Structures, Evanston, IL, Oct 18 – 20 1965, Pergamon Press, 237 – 254.Google Scholar
  11. 11.
    D. A. Evensen, 1964. Non-linear flexural vibrations of thin circular rings, PhD Thesis, California Institute of Technology, Pasadena, CA.Google Scholar
  12. 12.
    D. A. Evensen, 1965. A theoretical and experimental study of nonlinear flexural vibrations of thin circular rings, NASA TR R-227, Washington, DC, Government Printing Office.Google Scholar
  13. 13.
    D. A. Evensen, 1967. Nonlinear flexural vibrations of thin-walled circular cylinders, NASA TN D-4090.Google Scholar
  14. 14.
    M. D. Olson, 1965. Some experimental observations on the nonlinear vibration of cylindrical shells, AIAA Journal, 3, 1775–1777.CrossRefADSGoogle Scholar
  15. 15.
    Y. Matsuzaki, S. Kobayashi, 1970. A theoretical and experimental study of the nonlinear flexural vibration of thin circular cylindrical shells with clamped ends, Trans. of the Japan Society for Aeronautical and Space Sciences, 12, 55 – 62.Google Scholar
  16. 16.
    Y. Matsuzaki, S. Kobayashi, 1969. An analytical study of the nonlinear flexural vibration of thin circular cylindrical shells (in Japanese), Journal of the Japan Society for Aeronautical and Space Sciences, 17, 308 – 315.Google Scholar
  17. 17.
    J. H. Ginsberg, 1973. Large-amplitude forced vibrations of simply supported thin cylindrical shells, ASME J. Appl. Mech., 40, 471 – 477.zbMATHCrossRefGoogle Scholar
  18. 18.
    J. H. Ginsberg, 1974. Nonlinear axisymmetric free vibration in simply supported cylindrical shells, ASME J. Appl. Mech., 41, 310 – 311.CrossRefGoogle Scholar
  19. 19.
    J. C. Chen, C. D. Babcock, 1975. Nonlinear vibration of cylindrical shells, AIAA Journal, 13, 868 – 876.zbMATHCrossRefADSGoogle Scholar
  20. 20.
    G. Prathap, 1978. Comments on the large-amplitude asymmetric vibrations of some thin shells of revolution, Journal of Sound and Vibration, 56, 303 – 305.CrossRefADSGoogle Scholar
  21. 21.
    E. H. Dowell, C. S. Ventres,1968. Modal equations for the nonlinear flexural vibrations of a cylindrical shell, International Journal of Solids and Structures, 4, 975 – 991.zbMATHCrossRefGoogle Scholar
  22. 22.
    H. V. Ramani, 1985. An analytical investigation of large amplitude free flexural vibration of thin circular cylindrical shells, M. S. Thesis, Department of Aerospace Engineering, IIT Madras, India.Google Scholar
  23. 23.
    T. K. Varadhan, G. Prathap, H. V. Ramani, 1989. Nonlinear free flexural vibrations of thin circular cylindrical shells, AIAA Journal, 27, 1303 – 1304.CrossRefADSGoogle Scholar
  24. 24.
    T. Ueda, 1979. Non-linear free vibrations of conical shells, Journal of Sound and Vibration, 64, 85 – 95.zbMATHCrossRefADSGoogle Scholar
  25. 25.
    M. Amabili, 2003. Nonlinear vibrations of circular cylindrical shells with different boundary conditions, AIAA Journal, 41, 1119 – 1130.CrossRefADSGoogle Scholar
  26. 26.
    M. Amabili, F. Pellicano, M. P. Paidoussis, 1998. Nonlinear vibrations of simply supported, circular cylindrical shells, coupled to quiescent fluid, Journal of Fluids and Structures, 12, 883 – 918.CrossRefADSGoogle Scholar
  27. 27.
    M. Amabili, F. Pellicano, M. P. Paidoussis, 1999. Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid. Part I: stability, Journal of Sound and Vibration, 225, 655–699.CrossRefADSGoogle Scholar
  28. 28.
    M. Amabili, F. Pellicano, M. P. Paidoussis, 1999a. Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid. Part II: Large-amplitude vibrations without flow, Journal of Sound and Vibration, 228, 1103–1124.CrossRefADSGoogle Scholar
  29. 29.
    M. Amabili, F. Pellicano, M. P. Paidoussis, 2000. Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid. Part III: Truncation effect without flow and experiments, Journal of Sound and Vibration, 237, 617–640.CrossRefADSGoogle Scholar
  30. 30.
    M. Amabili, F. Pellicano, M. P. Paidoussis, 2000a. Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid. Part IV: Large-amplitude vibrations with flow, Journal of Sound and Vibration, 237, 641–666.CrossRefADSGoogle Scholar
  31. 31.
    K. N. Karagiozis, M. Amabili, M. P. Paidoussis, A. K. Misra, 2005. Nonlinear vibrationm of fluid filled clamped circular circular cylindrical shells, Journal of Fluids and Structures, 21, 579 – 595.ADSGoogle Scholar
  32. 32.
    M. Chiba, 1993. Experimental studies on a nonlinear hydroelastic vibration of a clamped cylindrical tank partially filled with liquid, ASME Journal of Pressure Vessel Technology, 115, 381 – 388.CrossRefGoogle Scholar
  33. 33.
    M. Amabili, F. Pellicano, 2001. Nonlinear supersonic flutter of circular cylindrical shells, AIAA Journal, 39, 564 – 573.CrossRefADSGoogle Scholar
  34. 34.
    K. P. Soldatos, 1999. Mechanics of Cylindrical Shells with Non-Circular Cross-Section, Applied Mechanics Review, 52, 237 – 274.CrossRefGoogle Scholar
  35. 35.
    K. A. V. Pandalai, M. Sathyamoorthy, 1970. Non-linear flexural vibrations of orthotropic oval cylindrical shells, Studies in Structural Mechanics (K. A. V. Pandalai, editor), 47–74.Google Scholar
  36. 36.
    B. P. Patel, M. Ganapathi, D. P. Makhecha, S. S. Gupta, 2002. On the nonlinear free flexural vibrations problem for thin elastic rings, Journal of The Aeronautical Society of India, 54, 298 – 309.Google Scholar
  37. 37.
    B. P. Patel, M. Ganapathi, D. P. Makhecha, P. Shah, 2003. Large amplitude free flexural vibration of rings using finite element approach, International Journal of Nonlinear Mechanics, 37, 911 – 921.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  1. 1.Department of Applied MechanicsIndian Institute of Technology DelhiIndia

Personalised recommendations