Skip to main content

High Pressure Resistance and Adaptation of European Eels

  • Chapter
Spawning Migration of the European Eel

Part of the book series: Fish & Fisheries Series ((FIFI,volume 30))

The fish is often used as a model for experiments under pressure because it has three main advantages (Barth譩my 1985): (a) It is a vertebrate which has an organisation not very different from a mammal; for some authors, due to the high number of species, the fish is even the typical vertebrate (Bone et al. 1995); (b) The ectothermic quality of fish enables study of pressure/temperature interactions; (c) Because they breathe water, fish can be used to study separately the effects of hydrostatic pressure and/or the effects of gas pressure, which is useful in understanding mammalian physiology (see S补rt 1997).

The adverse effects of high pressure on fishes have been known since the 19th century (Bert 1878; Regnard 1885) and are well reviewed in the literature (Gordon 1970; S补rt and Macdonald 1993; S补rt 2003). However, the great majority of these studies are concerned with the biological effects of high hydrostatic pressure (HP) per se considered, like temperature, as a thermodynamic factor (see Somero 1991; S补rt 2003). In other words, the effects of pressure on fishes have been studied more from a fundamental than from an ecophysiological point of view. In fact, in regard to pressure, we can consider three types of fishes: those which never encounter variations in pressure, and are unable to adapt to pressure effects (S补rt 2003); those which always live at great depth and have a poor resistance to low (atmospheric) pressure (Siebenaller and Somero 1989; Somero 1991); and finally those which, as the eel, Anguilla, live apart of their life under pressure and thus must adapt to its adverse effects. In terms of environmental adaptation, the eel is a fascinating animal, and an excellent model to examine almost any environmental effects in the field of fish biology (Owen 2001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altringham JD, Ellerby DJ (1999) Fish swimming: patterns in muscle function. J. Exp. Biol. 202(23):3397–3403

    PubMed  CAS  Google Scholar 

  • Amerand A, Vettier A, Sébert P, Cann-Moisan C (2005) In vitro effect of hydrostatic pressure exposure on hydroxyl radical production in fish red muscle. Redox Rep. 10:25–28

    PubMed  CAS  Google Scholar 

  • Amerand A, Vettier A, Sébert P, Moisan C (2006) Does hydrostatic pressure has an effect on reactive oxygen species in the eels. Undersea Hyperb. Med. 33:157–160

    PubMed  CAS  Google Scholar 

  • Aoyama J, Hissmann K, Yoshinaga T, Sasai S, Uto T, Ueda H (1999) Swimming depth of migrating silver eels Anguilla japonica released at seamounts of the West Mariana Ridge their estimated spawning sites. Mar. Ecol. Prog. Ser. 186:265–269

    Google Scholar 

  • Bailey DM, Genard B, Collins MA, Rees JF, Unsworth SK, Battle EJV, Bagley PM, Jamieson AJ, Priede IG (2005) High swimming and metabolic activity in the deep-sea eel Synaphobranchus kaupii revealed by integrated in situ and in vitro measurements. Physiol. Biochem. Zool. 78:335–346

    PubMed  Google Scholar 

  • Balon EK (1975) Reproductive guilds of fishes: a proposal and definition. J. Fish. Res. Board Can. 32:821–864

    Google Scholar 

  • Barni S, Bernocchi G, Gerzeli G (1985) Morphohistochemical changes in hepatocytes during the life cycle of the European eel. Tissue Cell 17:97–109

    PubMed  CAS  Google Scholar 

  • Barthélémy L (1985) Le poisson modèle scientifique en hyperbarie. Bull. Inst. Oceanogr. 4:9–31

    Google Scholar 

  • Barthélémy L, Cann-Moisan C, Simon B, Caroff J, Sébert P (1991) Concentrations encéphaliques d'acide gamma-aminobutyrique (Gaba) et de glutamine chez un poisson (Anguilla anguilla L.) soumis à une pression hydrostatique de101 ATA. Med. Sub. Hyp. 1:35–47

    Google Scholar 

  • Bartlett D, Wright M, Yayanos AA, Silverman M (1989) Isolation of a gene regulated by hydrostatic pressure in a deep-sea bacterium. Nature 342:572–574

    PubMed  CAS  Google Scholar 

  • Bartlett DH, Chi E, Wright ME (1993) Sequence of the Omph gene from the deep-sea bacterium photobacterium Ss9. Gene 131:125–128

    PubMed  CAS  Google Scholar 

  • Bartlett DH, Kato C, Horikoshi K (1995) High pressure influences on gene and protein expression. Res. Microbiol. 146:697–706

    PubMed  CAS  Google Scholar 

  • Belaud A, Barthélémy L, Lesaint J, Peyraud C (1976) Trying to explain an effect of per se hydrostatic pressure on heart rate in fish. Aviat. Space Environ. Med. 47:252–257

    PubMed  CAS  Google Scholar 

  • Begg DA, Salmon ED, Hyatt HA (1983) The changes in structural organization of actin in the sea urchin egg cortex in response to hydrostatic pressure. J. Cell. Biol. 97:1795–1805

    PubMed  CAS  Google Scholar 

  • Belaud A (1975) Contribution à l'étude de quelques réactions physiologiques de l'anguille (Anguilla anguilla L.) soumise à diverses conditions hyperbares. Ph.D. thesis, UBO, Brest, pp. 271

    Google Scholar 

  • Bell MV, Henderson RJ, Sargent JR (1986) The role of polyunsaturated fatty acids in fish. Comp. Biochem. Physiol. 83B:711–719

    CAS  Google Scholar 

  • Beney L, Perrier-Cornet JM, Wayert M, Gervais P (1997) Modification of phospholipids vesicles induced by high pressure: influence of bilayer compressibility. Biophys. J. 72:1258–1263

    PubMed  CAS  Google Scholar 

  • Bert P (1878) La pression barométrique. Masson, Paris: Reprinted in 1979 by the Editions du Centre National de la Recherche Scientifique, Paris

    Google Scholar 

  • Bertin L (1951) les anguilles variation croissance euryhalinité toxicité hermaphrodisme juvénile et sexualité migrations métamorphoses. Payot, Paris

    Google Scholar 

  • Beullens K, Eding EH, Ollevier F, Komen J, Richter CJJ (1997) Sex differentiation changes in length weight and eye size before and after metamorphosis of European eel (Anguilla anguilla L.) maintained in captivity. Aquaculture 153:151–162

    Google Scholar 

  • Block BA (1991) Endothermy in fish: thermogenesis ecology and evolution. In: Hochachka PW and Mommsen TP (eds) Phylogenetic and Biochemical Perspectives. Elsevier, Amsterdam, pp. 269–311

    Google Scholar 

  • Bone Q, Marshall NB, Blaxter JHS (1995) Biology of Fishes. Blackie Academy and Professional, London

    Google Scholar 

  • Bostrom SL, Johansson RG (1972) Enzyme activity patterns in white and red muscle of the eel (Anguilla anguilla) at different developmental stages. Comp. Biochem. Physiol. 42B:533–542

    Google Scholar 

  • Brauer RTW, Jordan MR, Miller CG, Johnson ED, Dutcher JA, Sheeman ME (1985) Interaction of temperature and pressure in intact animals. In: Péqueux AJR, Gilles R (eds) High Pressure Effects on Selected Biological Systems. Springer, Berlin, pp. 3–28

    Google Scholar 

  • Carrillo M, Bromage N, Zanuy S, Serrano R, Prat F (1989) The effect of modifications in photoperiod on spawning time ovarian development and egg quality in the sea bass (Dicentrarchus labrax L. Aquaculture 81:351–365

    Google Scholar 

  • Carlisle DB, Denton EJ (1959) On the metamorphosis of the visual pigments of Anguilla anguilla (L.). J. Mar. Biol. Ass. UK 38:97–102

    Google Scholar 

  • Castonguay M, McCleave JD (1987) Vertical distributions diel and ontogenic vertical migrations and net avoidance of leptocephali of Anguilla and other common species in the Sargasso Sea. J. Plankton. Res. 9:195–214

    Google Scholar 

  • Cornish I, Moon TW (1985) Glucose and lactate kinetics in American eel Anguilla rostrata. Am. J. Physiol. 249:R67–R72

    PubMed  CAS  Google Scholar 

  • Cossins AR, Macdonald AG (1984) Homeoviscous theory under pressure: the molecular order of membrane from deep-sea fish. Biochim. Biophys. Acta 776:144–150

    CAS  Google Scholar 

  • D'Aoust BG (1969) Hyperbaric oxygen: toxicity to fish at pressures present in their swimbladders. Science 163:576–578

    PubMed  Google Scholar 

  • Dasgupta S (1962) Induction of triploidy by hydrostatic pressure in the leopard frog Rana pipiens. J. Exp. Zool. 151:105–121

    PubMed  CAS  Google Scholar 

  • Dave G, Johansson-Sjobeck ML, Larsson A, Lewander K, Lidman U (1975) Metabolic and hematological effects of starvation in the European eel Anguilla anguilla L. I. Carbohydrate lipid protein and inorganic ion metabolism. Comp. Biochem. Physiol. 52A:423–430

    Google Scholar 

  • Dufour S, Fontaine YA (1985) La migration de reproduction de l'anguille européenne (Anguilla anguilla L.): rlôle probable de la pression hydrostatique dans la stimulation de la fonction gonadotrope. Bull. Soc. Zool. Fr. 110:291–299

    Google Scholar 

  • Dunel-Erb S, Sébert P, Chevalier C, Simon B, Barthélémy L (1996) Morphological changes induced by acclimatation to high pressure in the gill epithelium of the freshwater yellow eel. J. Fish. Biol. 48:118–122

    Google Scholar 

  • Durif C, Dufour S, Elie P (2005) The silvering process of Anguilla anguilla: a new classification from the yellow resident to the silver migrating stage. J. Fish Biol. 66:1025–1043

    Google Scholar 

  • Egginton S (1986) Metamorphosis of the American eel Anguilla rostrata Leseur: changes in metabolism of skeletal muscle. J. Exp. Biol. 237:173–184

    CAS  Google Scholar 

  • Ekman S (1932) Prinzipielles uber die wanderungen und die tiergeographische stellung des europaischen aales Anguilla anguilla (L.) Zoogeographica 1:85–106

    Google Scholar 

  • Ellerby DJ, Spierts IL, Altringham JD (2001) Slow muscle power output of yellow- and silver-phase European eels (Anguilla anguilla L.): changes in muscle performance prior to migration. J. Exp. Biol. 204:1369–1379

    PubMed  CAS  Google Scholar 

  • Else PL, Hulbert AJ (2003) Membranes as metabolic pacemakers. Clin. Exp. Pharmacol. Physiol. 30:559–564

    PubMed  CAS  Google Scholar 

  • Flügel H (1972) Adaptation and acclimatization to high pressure environments. In: Brauer RW (ed) Barobiology and the Experimental Biology of the Deep Sea. University of North Cardina Chapel Hill, NC, pp. 69–88

    Google Scholar 

  • Fontaine M (1929) De l'augmentation de la consommation d'O des animaux marins sous l'influence des fortes pressions ses variations en fonction de l'intensité de la compression. C. R. Acad. Sci. 188:460–461

    CAS  Google Scholar 

  • Fontaine M (1975) Physiological mechanisms in the migration of marine and amphihaline fish. Adv. Mar. Biol. 13:241–355

    Google Scholar 

  • Fontaine YA, Dufour S, Alinat J, Fontaine M (1985) L'immersion prolongée en profondeur stimule la fonction hypophysaire gonadotrope de l'anguille européenne (Anguilla anguilla L.) femelle. C. R. Acad. Sci. Paris 300:83–87

    CAS  Google Scholar 

  • Fontaine YA, Le Belle N, Lopez EBQ, Alinat J, Vidal B, Barthélémy L, Sébert P, Alinat J, Petter AJ (1990) Infestation de populations françaises d'anguilles (Anguilla anguilla L.) par des nématodes (Anguillicola crassus): essais thérapeuthiques évaluation de risques potentiels liés x00E0; l'écophysiologie de l'hôte. Ann. Parasitol. Hum. Comp. 65:64–68

    Google Scholar 

  • Fricke H, Kaese R (1995) Tracking of artificially matured eels (Anguilla anguilla) in the Sargasso Sea and the problem of the eel's spawning site. Naturwissenschaften 85:290–291

    Google Scholar 

  • Gennser M, Karpe F, Ornhagen HC (1990) Effects of hyperbaric pressure and temperature on atria from ectotherm animals (Rana pipiens and Anguilla anguilla). Comp. Biochem. Physiol. 95A:219–228

    Google Scholar 

  • Gillet C, Vauchez C, Haffray P (2001) Triploidy induced by pressure shock in Arctic charr (Salvelinus alpinus): growth survival and maturation until the third Year. Aquat. Living Resour. 14:327–334

    Google Scholar 

  • Goolish EM (1991) Aerobic and anaerobic scaling in fish. Biol. Rev. 66:33–56

    Google Scholar 

  • Goolish EM (1992) Swimbladder function and buoyancy regulation in the killifish Fundulus heteroclitus. J. Exp. Biol. 166:61–81

    Google Scholar 

  • Gordon MS (1970) Hydrostatic pressure. In: Hoar WS, Randall DJ (eds) Fish Physiology. Academic Press, New York/London, pp. 445–464

    Google Scholar 

  • Greene DHS, Selivonchick DP (1987) Lipid metabolism in fish. Prog. Lipid Res. 26:53–85

    PubMed  CAS  Google Scholar 

  • Guderley H (1990) Functional significance of metabolic responses to thermal acclimation in fish muscle. Am. J. Physiol. 259:R245–R252

    PubMed  CAS  Google Scholar 

  • Haro AJ (1991) Thermal preferenda and behaviour of Atlantic eels (genus Anguilla) in relation to their spawning migration. Environ. Biol. Fish 31:171–184

    Google Scholar 

  • Hazel JR (1995) Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annu. Rev. Physiol. 57:19–42

    CAS  Google Scholar 

  • Hicks JW, Bennett AF (2004) Eat and run: prioritization of oxygen delivery during elevated metabolic states. Respir. Physiol. Neurobiol. 144:215–224

    PubMed  Google Scholar 

  • Hiroi J, Yasumasu S, Kawazu K, Kaneko T (2003) Hatching enzymes in the Japanese eel. In: AidaK, Tsukamoto K, Yamauchi K (eds) Eel Biology. Springer, Tokyo, pp. 445–456

    Google Scholar 

  • Jellyman D, Tsukamoto K (2002) First use of archival transmitters to track migrating freshwater els Anguilla dieffenbachii at sea. Mar. Ecol. Prog. Ser. 233:207–215

    Google Scholar 

  • Johnstone DF, Macdonald AG, Mojsiewicz WR, Wardle CS (1989) Preliminary experiments in the daptation of the European eel (Anguilla anguilla) to hydrostatic pressure. J. Physiol. 417:87

    Google Scholar 

  • Kelly CE, Kennedy CR, Brown JA (2000) Physiological status of wild European eels (Anguilla nguilla) infected with the parasitic nematode Anguillicola crassus Parasitology 20(2):195–202

    Google Scholar 

  • Kimberly A, Hammond KA, Diamond J (1997) Maximal sustained energy budgets in human and nimals. Nature 386:457–462

    Google Scholar 

  • Kirk RS, Lewis JW, Kennedy CR (2000) Survival and transmission of Anguillicola crassus uwahara Niimi & 1974 (Nematoda) in seawater eels. Parasitology 120(3):289–295

    PubMed  Google Scholar 

  • Kleckner RC (1980) Swim bladder volume maintenance related to initial oceanic migratory depth n silver-phase Anguilla rostrata. Science 208:1481–1482

    PubMed  CAS  Google Scholar 

  • Knopf K, Wurtz J, Sures B, Taraschewski H (1998) Impact of low water temperature on the dvelopment of Anguillicola crassus in the final host Anguilla anguilla. Dis. Aquat. Organ. 33:143–149

    PubMed  CAS  Google Scholar 

  • Kobayashi H, Pelster B, Scheid P (1989) Water and lactate movement in the swimbladder of the eel Anguilla anguilla. Respir. Physiol. 78:45–57

    PubMed  CAS  Google Scholar 

  • Lecomte-Finiger R, Yahyaoui A (1990) La microstrucutre de l'otholite au service de la connaissance du développment larvaire de l'anguille européenne. C. R. Acad. Sci. Paris 308:1–7

    Google Scholar 

  • Lee AG (1991) Lipids and their effects on membrane proteins: evidence against a role for fluidity. Prog. Lipid Res. 30:323–348

    PubMed  CAS  Google Scholar 

  • Lefebvre F, Contournet P, Crivelli AJ (2002) The health state of the eel swimbladder as a measure of parasite pressure by Anguillicola crassus. Parasitology 124(4):457–463

    PubMed  CAS  Google Scholar 

  • Le Galliard JF, Clobert J, Ferrière R (2004) Physical performance and Darwinian fitness in lizards. Nature 432:502–505

    PubMed  Google Scholar 

  • Lewander K, Dave G, Johansson ML, Larsson A, Lidman U (1974) Metabolic and hematological studies on the yellow and silver phases of the European eel Anguilla anguilla L. I. Carbohydrate lipid protein and inorganic ion metabolism. Comp. Biochem. Physiol. 47B:571–581

    Google Scholar 

  • Love RM (1970) The Chemical Biology of Fishes. Academic Press, New York

    Google Scholar 

  • Macdonald AG (1984) The effects of pressure on the molecular structure and physiological functions of cell membrane. Phil. Trans. R. Soc. Lond. 304B:47–68

    Google Scholar 

  • Macdonald AG, Cossins AR (1985) The theory of homeoviscous adaptation of membranes applied to deep-sea animals. Symp. Soc. Exp. Biol. 39:301–322

    PubMed  CAS  Google Scholar 

  • Marchelidon J, Le Belle N, Hardy A, Vidal B, Sbaihi M, Burzawa-Gerard E, Schmitz M, Dufour S (1999) Study of variations of anatomical and endocrine parameters in sedentary and downstream migrating female European eels (Anguilla anguilla): application to the characterization of the silver stage. Bull. Fr. Pêche Pisc. 355:349–368

    Google Scholar 

  • Marsland DA (1970) Pressure-temperature studies on the mechanisms of cell division. In: Zimmerman AM (ed) High Pressure Effects on Cellular Processes. Academic Press, New York, pp. 260–312

    Google Scholar 

  • Marsland DJ (1938) The effects of high hydrostatic pressure upon cell division in Arbacia eggs. J. Cell. Comp. Physiol. 12:57–70

    CAS  Google Scholar 

  • Marsland DJ (1950) The mechanisms of cell division: temperature-pressure experiments on the cleaving eggs of Arbacia punctulata. J. Cell. Comp. Physiol. 3:205–227

    Google Scholar 

  • McCleave JD (1977) Migratory mechanisms in larval and adult American and European eels (Anguilla rostrata and A anguilla). Nat. Geog. Soc. 18:517–528

    Google Scholar 

  • McCleave JD, Arnold GP (1999) Movements of yellow- and silver-phase European eels (Anguilla anguilla L) tracked in the western north sea. Ices J. Mar. Sci. 56:510–536

    Google Scholar 

  • Molnar K, Szekely C, Perenyi M (1994) Dynamics of Anguillicola crassus (Nematoda: Dracunculoidea) infection in eels of Lake Balaton Hungary. Folia Parasitol. (Praha) 41:193–202

    CAS  Google Scholar 

  • Moon TW (1983) Metabolic reserves and enzyme activities with food deprivation in immature American eels Anguilla rostrata (Lesueur). Can. J. Zool. 61:802–811

    CAS  Google Scholar 

  • Moon TW, Latham R (1984) Myofibrillar ATPase activities in red and white myotomal muscles of the American eel Anguilla rostrata (Lesueur). Comp. Biochem. Physiol. 79A:151–153

    CAS  Google Scholar 

  • Mushiake K, Kawano K, Sakamoto W, Hasegawa I (1994) Effects of extended daylength on ovarian maturation and hCG induced spawning in yellowtail fed moist pellets. Fish Sci. 60:647–651

    CAS  Google Scholar 

  • Naroska V (1968) Vergleichende untersuchugen über den einfluss des hydrostatischen druckes auf überlebensfähigkeit und stoffwechsel intensität mariner evertebraten und teleosteer Kieler. Meeresforschung 24:95–123

    Google Scholar 

  • Nilsson L, Nyman L, Westin L, Ornhagen H (1981) Simulation of the reproductive migration of European eels (Anguilla anguilla L.) through manipulation of some environmental factors under hydrostatic compression. Spec. Sci. Technol. 4:475–484

    Google Scholar 

  • Nimeth K, Zwerger P, Wurtz J, Salvenmoser W, Pelster B (2000) Infection of the glass-Eel swimbladder with the nematode Anguillicola crassus. Parasitology 121(1):75–83

    PubMed  Google Scholar 

  • Owen SF (2001) Meeting energy budgets by modulation of behaviour and physiology in the eel (Anguilla anguilla L.). Comp. Biochem. Physiol. 128A:631–644

    CAS  Google Scholar 

  • Pankhurst NW (1982) Changes in body musculature with sexual maturation in the European eel Anguilla anguilla (L.). J. Fish Biol. 21:417–428

    Google Scholar 

  • Pankhurst NW, Lythgoe JN (1983) Changes in vision and olfaction during sexual maturation in the European eel Anguilla anguilla (L.) and American eel Anguila rostrata (Lesueur). J. Fish Biol. 23:229–240

    Google Scholar 

  • Pelster B (1997) Buoyancy at depth. In: Randall DJ, Farell AP (eds) Deep Sea Fishes Fish Physiology. Academic press, San Diego, CA, pp. 195–238

    Google Scholar 

  • Pelster B (2004) pH regulation and swimbladder function in fish. Respir. Physiol. Neurobiol. 144:179–190

    PubMed  CAS  Google Scholar 

  • Pelster B, Scheid P (1992) Countercurrent concentration and gas secretion in the fish swim bladder. Physiol. Zool. 65:1–16

    Google Scholar 

  • Pennec JP, Le Bras YM (1988) Dial and seasonal rhythms of the heart rate in the common eel (Anguilla anguilla L.): role of cardiac innervation. Exp. Biol. 47:155–160

    PubMed  CAS  Google Scholar 

  • Ponat A (1967) Untersuchungen zur zellulären druckresistenz verschiedener evertebrates der nord-und ostsee Kieler. Meeresforschung 23:21–47

    Google Scholar 

  • Pradillon F, Shillito B, Young CM, Gaill F (2001) Developmental arrest in vent worm embryos. Nature 413:698–699

    PubMed  CAS  Google Scholar 

  • Regnard P (1885) Phénomènes objectifs que l'on peut observer sur les animaux soumis aux hautes pressions. C. R. Sci. Soc. Biol. 37:510–515

    Google Scholar 

  • Robins CR, Cohen DM, Robins C (1979) The Eels Anguilla and Histiobranchus photographed on the floor of the deep Atlantic in the Bahamas. Bull. Mar. Sci. 29:401–405

    Google Scholar 

  • Roche H, Buet A, Ramade F (2003) Caractéristiques écophysiologiques d'population d'anguilles de camargue exposée à une pollution clandestine par des polluants organiques persistants. Rev. Ecol. 58:103–126

    Google Scholar 

  • Rossignol O, Sébert P, Simon B (2006) Effects of pressure acclimatization on silver eel (Anguilla anguilla L.) slow muscle contraction. Comp. Biochem. Physiol. 143A:234–238

    CAS  Google Scholar 

  • Rottmann RW, Shireman J V, Chapman FA (1991) Induction and Verification of Triploidy in Fish. Southern Regional Aquaculture Center, pp. 421

    Google Scholar 

  • Scholander PF, Van Dam L (1953) Composition of the swimbladder gas in deep sea fishes. Biol. Bull. Mar. Biol. Lab. 104:75–86

    CAS  Google Scholar 

  • Sébert ME, Amérand A, Vettier A, Weltzien FA, Pasqualini C, Sébert P, Dufour S (2007) Effects of high hydrostatic pressure on the pituitary-gonad axis in the European eel Anguilla anguilla (L.). Gen. Comp. Endocrinol. 153:289–298

    PubMed  Google Scholar 

  • Sébert P (1993) Energy metabolism of fish under hydrostatic pressure: a review. Trends Comp. Biochem. Physiol. 1:289–317

    Google Scholar 

  • Sébert P (1997) Pressure effects on shallow-water fishes. In: Randall DJ, Farell AP (eds) Deep Sea Fishes Fish Physiology. Academic Press, San Diego, CA, pp. 279–324

    Google Scholar 

  • Sébert P (2003) Fish adaptations to pressure. In: Val AL, Kapoor BG (eds) Fish Adaptations. Science Publisher, Enfield, pp. 73–95

    Google Scholar 

  • Sébert P (2007) Fish muscle function and pressure. In: Sébert P, Onyango D, Kapoor BG (eds) Fish Life in Special Environments. Science Publisher, Enfield (in preparation)

    Google Scholar 

  • Sébert P, Barthélémy L (1985a) Effects of high hydrostatic pressure per se 101 atm on eel metabolism. Respir. Physiol. 62:349–357

    Google Scholar 

  • Sébert P, Barthélémy L (1985b) Hydrostatic pressure and adrenergic drugs (agonists and antagonists): effects and interactions in fish. Comp. Biochem. Physiol. 82C:207–212

    Google Scholar 

  • Sébert P, Macdonald AG (1993) Fish. In: Macdonald AG (ed) Effects of High Pressure on Biological Systems. Springer, Berlin, pp. 147–196

    Google Scholar 

  • Sébert P, Theron M (2001) Why can the eel unlike the trout migrate under pressure? Mitochondrion 1:79–85

    PubMed  Google Scholar 

  • Sébert P, Barthélémy L, Caroff J (1986) Catecholamine content (as measured by the HPLC method) in brain and blood plasma of the eel: effects of 101 ATA hydrostatic pressure. Comp. Biochem. Physiol. 84C:155–157

    Google Scholar 

  • Sébert P, Barthélémy L, Caroff J, Hourmant A (1987) Effects of hydrostatic pressure per se (101 ATA) on energetic processes in fish. Comp. Biochem. Physiol. 86A:491–495

    Google Scholar 

  • Sébert P, Péqueux A, Simon B, Barthélémy L (1991) Effects of long term exposure to 101 ATA HP on blood gill and muscle composition and of some enzyme activities of the fw eel (Anguilla anguilla L.). Comp. Biochem. Physiol. 98B:573–577

    Google Scholar 

  • Sébert P, Meskar A, Simon B, Barthélémy L (1994) Pressure acclimation of the eel and liver membrane composition. Experientia 50:121–123

    Google Scholar 

  • Sébert P, Simon B, Barthélémy L (1995) Effects of a temperature increase on oxygen consumption of yellow fresh water eel exposed to high hydrostatic pressure. Exp. Physiol. 80:1039–1046

    PubMed  Google Scholar 

  • Sébert P, Peragon J, Barroso JB, Simon B, Melendez-Hevia E (1998) High hydrostatic pressure (101 ATA) changes the metabolic design of yellow freshwater eel muscle. Comp. Biochem. Physiol. 121B:195–200

    Google Scholar 

  • Sébert P, Theron M, Vettier A (2004) Pressure and temperature interactions on cellular respiration: a review. Cell. Mol. Biol. 50:491–500

    PubMed  Google Scholar 

  • Seoka M, Yamada S, Iwata Y, Yanagisawa T, Nakagawa T, Kumai H (2003) Differences in the biochemical content of buoyant and non-buoyant eggs of the Japanese eel Anguilla japonica. Aquaculture 216:355–362

    CAS  Google Scholar 

  • Siebenaller JF, Somero GN (1989) Biochemical adaptation to the deep sea. CRC Crit. Rev. Aquat. Sci. 1:1–25

    CAS  Google Scholar 

  • Simon B (1990) Métabolisme énergétique de l'anguille (Anguilla anguilla L.): effets d'expositions de courte durée (3 h) et de longue durée (1 mois) à 101 ATA de pression hydrostatique. Ph.D. thesis, UBO, Brest pp. 105

    Google Scholar 

  • Simon B, Sébert P, Barthélémy L (1989) Effects of long-term exposure to hydrostatic pressure per se (101 ATA) on eel metabolism. Can. J. Physiol. Pharmacol. 67:1247–1251

    PubMed  CAS  Google Scholar 

  • Simon B, Sébert P, Barthélémy L (1991) Eel Anguilla anguilla (L.) muscle modifications induced by long-term exposure to 101 ATA hydrostatic pressure. J. Fish Biol. 38:89–94

    Google Scholar 

  • Simon B, Sébert P, Cann-Moisan C, Barthélémy L (1992) Muscle energetics in yellow fresh water eel (Anguilla anguilla L.) exposed to high hydrostatic pressure (101 ATA) for 30 days. Comp. Biochem. Physiol. 102B:205–208

    CAS  Google Scholar 

  • Simon B, Barthélémy L, Sébert P (1994) Comparison of some isoenzymes on the yellow and silver phases of the European eel (Anguilla anguilla L.). Aquaculture 25:937–942

    Google Scholar 

  • Somero GN (1991) Hydrostatic pressure and adaptation to the deep sea. In: Prosser CL (ed) Environmental and Metabolic Animal Physiology. Wiley-Liss, New York, pp. 167–204

    Google Scholar 

  • Speers-Roesch B, Lingwood D, Stevens ED (2004) Effects of temperature and hydrostatic pressure on routine oxygen uptake of the bloater (Coregonus hoyi). J. Great Lakes Res. 30:70–81

    CAS  Google Scholar 

  • Sprengel G, Luchtenberg H (1991) Infection by endoparasites reduces maximum swimming speed of European smelt Osmerus eperlanus and European eel Anguilla anguilla. Dis. Aquat. Organ. 11:31–35

    Google Scholar 

  • Strand E, Jorgensen C, Huse G (2005) Modelling buoyancy regulation in fishes with swimbladders:bioenergetics and behaviour. Ecol. Model. 185:309–327

    Google Scholar 

  • Tesch FW (1978) Telemetric observations on the spawning migration of the eel (Anguilla anguilla) west of the European continental shelf. Environ. Biol. Fish 3:203–209

    Google Scholar 

  • Tesch FW (1989) Changes in swimming depth and direction of silver eels (Anguilla anguilla L.) from the continental shelf to the deep sea. Aquat. Living Resour. 2:9–20

    Google Scholar 

  • Tesch FW (2003) The Eel. Fifth edition. Thorpe JE, Oxford

    Google Scholar 

  • Theron M, Guerrero F, Sébert P (2000) Improvement in the efficiency of oxidative phosphorylation in the freshwater eel acclimated to 10.1 MPa hydrostatic pressure. J. Exp. Biol. 203(19):3019–3023

    PubMed  CAS  Google Scholar 

  • Thomson AJ, Sargent JR (1977) Changes in the levels of chloride cells and (Na+ + K+.)-dependent ATPase in the gills of yellow and silver eels adapting to seawater. J. Exp. Zool. 200:33–40

    PubMed  CAS  Google Scholar 

  • Tyler PA, Young CM (1998) Temperature and pressure tolerances in dispersal stages of the genus Echinus (Echinodermata: Echinoidea): prerequisites for deep-sea invasion and speciation. Deep-Sea Res. II 45:253–277

    Google Scholar 

  • Tytler P, Blaxter JHS (1973) Adaptation by cod and saithe to pressure changes. Neth. J. Sea Res. 7:31–45

    Google Scholar 

  • Van Ginneken V, Van Den Thillart G (2000) Eel fat stores are enough to reach the Sargasso. Nature 403:156–157

    PubMed  Google Scholar 

  • Van Ginneken V, Maes G (2005) The European eel (Anguilla anguilla Linnaeus) its lifecycle evolution and reproduction: a literature review. Rev. Fish Biol. Fish. 15:367–398

    Google Scholar 

  • Van Ginneken V, Antonissen E, Müller UK, Booms R, Eding E, Verreth J, Van Den Thillart G (2005a) Eel migration to the Sargasso: remarkably high swimming efficiency and low energy costs. J. Exp. Biol. 208:1329–1335

    Google Scholar 

  • Van Ginneken V, Vianen G, Muusze B, Palstra A, Verschoor L, Lugten O, Onderwater M, Van Schie S, Niemantsverdriet P, Van Heeswijk R, Eding E, Van Den Thillart G (2005b) Gonad development and spawning behavior of artificially-matured European eel (Anguilla anguilla L.). Anim. Biol. 55:203–218

    Google Scholar 

  • Vettier A (2005) La migration de reproduction de l'anguille européenne (Anguilla anguilla L): effets de la pression hydrostatique et de la métamorphose. Ph.D. thesis, UBO, Brest, pp. 90

    Google Scholar 

  • Vettier A, Sébert P (2004) Pressure resistance of aerobic metabolism in eels from different water environments. Mitochondrion 3:347–354

    PubMed  CAS  Google Scholar 

  • Vettier A, Szekely C, Sébert P (2003) Are yellow eels from Lake Balaton able to cope with high pressure encountered during migration to the Sargasso Sea? The case of energy metabolism. Anim. Biol. 53:329–338

    Google Scholar 

  • Vettier A, Amérand A, Cann-Moisan C, Sébert P (2005) Is the silvering process similar to the effects of pressure acclimatization on yellow eels? Respir. Physiol. Neurobiol. 145:243–250

    Google Scholar 

  • Vettier A, Labbé C, Amérand A, Da Costa G, Le Rumeur E, Moisan C, Sébert P (2006) Hydrostatic pressure effects on eel mitochondrial functioning and membrane fluidity. Undersea Hyperb. Med. 33:149–156

    PubMed  CAS  Google Scholar 

  • Wardle CS, Tetteh-Lartey N, Macdonald AG, Harper AA, Pennec JP (1987) The effect of pressure on the lateral swimming muscle of the European eel Anguilla anguilla and the deep sea eel Histiobranchus bathybius; results of Challenger cruise 6b/85. Comp. Biochem. Physiol. 88A:595–598

    Google Scholar 

  • Watanabe T (1982) Lipid nutrition in fish. Comp. Biochem. Physiol. 73B:3–15

    CAS  Google Scholar 

  • Watanabe T, Itoh A, Kitajima C, Fujita S (1984a) Effect of dietary protein levels on reproduction of red sea bream. Bull. Jpn. Soc. Sci. Fish. 50:1015–1022

    Google Scholar 

  • Watanabe T, Itoh A, Murakami A, Tsukashima Y, Kitajima C, Fujita S (1984b) Effect of nutritional quality of diets given to broodstock on the verge of spawning on reproduction of red sea bream. Bull. Jpn. Soc. Sci. Fish. 50:1023–1028

    Google Scholar 

  • Westin L, Nyman L (1979) Activity orientation and migration of Baltic eel (Anguilla anguilla (L.)) Rapp. Cons. Explor. Mer. 174:631–644

    Google Scholar 

  • White FN, Somero GN (1982) Acid base regulation and phospholipid adaptation to temperature time courses and physiological significance of modifying the milieu for protein function. Physiol. Rev. 62:40–90

    PubMed  CAS  Google Scholar 

  • Würtz J, Taraschewski H (2000) Histopathological changes in the swimbladder wall of the European eel Anguilla anguilla due to infections with Anguillicola crassus. Dis. Aquat. Organ. 39:121–134

    PubMed  Google Scholar 

  • Yamazaki F, Goodier J (1993) Cytogenetic effects of hydrostatic pressure treatment to suppress the first cleavage of salmon embryos. Aquaculture 110:51–59

    Google Scholar 

  • Young CM, Tyler PA (1993) Embryos of the deep-sea echinoid Echinus affinis require high pressure for development. Limnol. Oceanogr. 38:178–181

    Google Scholar 

  • Zara V, Palmieri L, Giudetti A, Ferramosca A, Capobianco L, Gnoni GV (2000) The mitochondrial tricarboxylate carrier: unexpected increased activity in starved silver eels. Biochem. Biophys. Res. Commun. 276:893–898

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Sébert, P., Vettier, A., Amérand, A., Moisan, C. (2009). High Pressure Resistance and Adaptation of European Eels. In: van den Thillart, G., Dufour, S., Rankin, J.C. (eds) Spawning Migration of the European Eel. Fish & Fisheries Series, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9095-0_5

Download citation

Publish with us

Policies and ethics