Advertisement

The Effect of PCBs on the Spawning Migration of European Silver Eel (Anguilla anguilla L.)

  • Vincent van Ginneken
  • Maarten Bruijs
  • Tinka Murk
  • Arjan Palstra
  • Guido van den Thillart
Part of the Fish & Fisheries Series book series (FIFI, volume 30)

Organochlorine compounds were widely used after the Second World War because they were cheap to produce and useful for many purposes, such as in agriculture for insecticides, in public health to control disease insect vectors and in industry (Pelletier et al. 2002). It is estimated that 16–30% of the 1 million tons of PCBs produced are still present in aquatic and terrestrial ecosystems (Borlakoglu and Haegele 1991). In spite of discharge restrictions, the concentrations of PCBs and chemically similar compounds in natural environments will likely remain elevated because of atmospheric transport and the internal cycling of contaminants already present in ecosystems. So, when not retrieved or destroyed, the rest of the PCBs will be released into the environment and eventually reach the oceans (Klamer et al. 1991). PCBs encompass a class of chlorinated compounds that includes up to 209 variations, or congeners, with different physical and chemical characteristics. They are ubiquitous environmental contaminants with specific modes of action (Safe 1984, 1990) and exposure to each of the congeners is associated with different levels of risk for harmful effects. Technical mixtures of PCBs, referred to by the trade names such as Aroclor, Phenoclor and Kanechlor, have been widely used for a variety of industrial purposes: hydraulic fluids in mining activities, plasticisers, fluid-filled capacitors and transformers, heat transfer fluids and paints. There are no known natural sources of PCBs. Most PCBs are oily liquids whose colour darkens and viscosity increases with rising chlorine content. PCBs with fewer chlorine atoms are more soluble, more amenable to chemical and biological degradation, and less persistent in the environment than those PCBs with more chlorine atoms bound to the biphenyl core (Safe 1984) (Fig. 15.1).

Keywords

Thyroid Hormone Rainbow Trout Brook Trout Lake Trout Salvelinus Namaycush 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alrubian J, Sollars C, Danielson PB, Dores RM (2003) Evaluating the radiation of the POMC gene in teleosts: characterization of American eel POMC. Gen. Comp. Endocrinol. 132: 384–390.CrossRefGoogle Scholar
  2. Anonymous (1987) Résutats d'analyse de Poissons du Rhin. Agence Financière de Bassin Rhin-Meuse. Moulins lesz Metz, Rapp. No. 11686 D, 6 pp.Google Scholar
  3. Anonymous (2006) COMMISSION REGULATION (EC) No 199/2006 of 3 February 2006 amending Regulation (EC) No 466/2001 setting maximum levels for certain contaminants in foodstuffs as regards dioxins and dioxin-like PCBs.Google Scholar
  4. Arkoosh MR, Cassillas E, Clemons E, McCain B, Varanasi U (1991) Suppression of immunological memory in juvenile chinook salmon (Oncorhynchus tshawytscha) from an urban estuary. Fish Shellfish Immunol. 1: 261–278.CrossRefGoogle Scholar
  5. Arkoosh MR, Clemons E, Myers M, Cassillas E (1994) Suppression of B-cell immunity in juvenile chinook salmon (Oncorhynchus tschawytscha) after exposure to either polycyclic aromatic hydrocarbon or to polychlorinated biphenyls. Immunopharmacol. Immunotoxicol. 16: 293–314.CrossRefGoogle Scholar
  6. Barron MG, Galbraith H, Beltman D (1995) Comparative reproductive and developmental toxicology of PCBs in birds. Comp. Biochem. Physiol. C112: 1–14.Google Scholar
  7. Bertin L (1956) Eels: A Biological Study. Cleaver-Hume Press, London.Google Scholar
  8. Bertrand P, Fournier S, Vigneaulty Y (1986) Concentrations en biphenyles polychloräs et en mätaux dans les sädiments de la Baie des Anglais (Quäbec). Rapp. Can. Sci. Halieut. Aquat. 568: 5.Google Scholar
  9. Bimbos D, Mau G (1986) Scahdestoffe in hessischen Flussfischen. Situation, Bewertung und Verzehrsempfehlungen. Fischwirt 36: 69–71.Google Scholar
  10. Birnbaum LS (1994) The mechanism of dioxin toxicity: relationship to risk assessment. Environ. Health Perspect. 102: 157–167.CrossRefGoogle Scholar
  11. Borlakoglu JT, Haegele KD (1991) Comparative aspects on the bioaccumulation, metabolism and toxicity of PCBs. Comp. Biochem. Physiol. C 100: 327–338.PubMedCrossRefGoogle Scholar
  12. Brouwer A, Murk AJ, Koeman JH (1990) Biochemical and physiological approaches in ecotoxi-cology. Funct. Ecol. 4: 275–281.CrossRefGoogle Scholar
  13. Brouwer A, Morse DC, Lans MC, Schuur AG, Murk AJ, Klasson-Wehler E, Bergman A, Visser TJ (1998) Interactions of persistent environmental organohalogens with the thyroid hormone system: mechanisms and possible consequences for animal and human health. Toxicol. Ind. Health 14(1/2) 59–84.Google Scholar
  14. Brown CL, Doroshov SL, Cochran MD, Bern HA (1989) Enhanced survival in striped bass fin-gerlings after maternal triiodothyronine treatment. Fish. Physiol. Biochem. 7: 295–299.CrossRefGoogle Scholar
  15. Bruggeman WA (1983) Bioaccumulation of polychlorobiphenyls and related hydrophobic chemicals in fish. Rijkswaterstaat. Rijksinstituut voor Zuivering van Afvalwater; Lelystad.Google Scholar
  16. Brusle J (1991) The eel (Anguilla sp) and organic chemical pollutants. Sci. Total Environ. 102: 1–19.PubMedCrossRefGoogle Scholar
  17. Castonguay M, Dutil J-D, Desjardins C (1989) Distinction between American eels (Anguilla rostrata) of different geographic origins on the basis of their organochlorine contaminant levels. Can. J. Fish. Aquat. Sci. 46: 836–843.Google Scholar
  18. Castonguay M, Hodson PV, Couillard CM, Eckersley MJ, Dutil J-D, Verreault G (1994) Why is recruitment of the American eel, Anguilla rostrata, declining in the St Lawrence River and Gulf? Can. J. Fish. Aquat. Sci. 51: 479–488.CrossRefGoogle Scholar
  19. Cyr DG, Eales JG (1988) In vitro effects of thyroid hormones on gonadotropin-induces estradiol-17β, secretion by ovarian follicles of rainbow trout, Salmo gairdneri. Gen. Comp. Endocrinol. 69: 80–87.PubMedCrossRefGoogle Scholar
  20. De Boer J, Stronck CJN, Traag WA, van der Meer J (1993) Non-Ortho and Mono-Ortho substituted Chlorobiphenyls and Chlorinated Dibenzo-p-Dioxis and Dinzofurans in Marine and Freshwater Fish and Shellfish from the Netherlands. Chemoshphere CMSHAF, 26: 1823–1842.Google Scholar
  21. De Boer J, Van der Valk F, Kerkhoff MAT, Hagel P, Brinkman UATh (1994) 8-Year study on the elimination of PCBs and other organochlorine compounds from eel (Anguilla anguilla) under natural conditions. Environ. Sci. Technol. 28(13): 2242–2248.CrossRefGoogle Scholar
  22. De Boer J, Hagel P (1994) Spatial differences and temporal trends of chlorobiphenyls in yellow eel (Anguilla anguilla) from inland waters of the Netherlands. Sci. Total Environ. 141: 155–174.CrossRefGoogle Scholar
  23. Dekker W (2004) Slipping through our hands. Population dynamics of the European eel, Ph.D. thesis, University of Amsterdam, 186 pp. ISBN 90-74549-10-1.Google Scholar
  24. De Voogt WP (1990) QSARs for the environmental behavior of polynuclear (hetero) aromatic compounds, studies in aqueous systems. Ph.D. thesis, VU Amsterdam. Deusichem; de Betuwe B.V. 235 pp. ISBN: 90-5549-270-1.Google Scholar
  25. Dickhoff WW, Yan L, Plisetskaya EM, Sullivan CV, Swanson P, Hara A, Bernard MG (1989) Relationship between metabolic and reproductive hormones in salmonid fish. Fish. Physiol. Biochem. 7: 147–155.Google Scholar
  26. Eales JG, MacLatchy DL (1989) The relationship between T3 production and energy balance in salmonids and other teleosts. Fish Physiol. Biochem. 7(1–4): 289–293.CrossRefGoogle Scholar
  27. Freeman HC, Idler DR (1975) The effect of polychlorinated biphenyls on steroidogenesis and reproduction in the brook trout (Salvelinus fontinalis). Can. J. Biochem. 3: 666–670.Google Scholar
  28. Fry DM, Toone CK (1981) DDT-induced feminization of gull embryos. Science 213: 922–924.PubMedCrossRefGoogle Scholar
  29. Giam CS, Chan HS, Neff GS (1978) Phthalate ester plasticizers, DDT, DDE and polychlorinated biphenyls in biota from the Gulf of Mexico. Mar. Pollut. Bull. 9: 249–251.CrossRefGoogle Scholar
  30. Giesy JP, Ludwig JP, Tillitt DE (1994) Deformities in birds of the Great Lakes Region. Environ. Sci. Technol. 28: 128A–135A.CrossRefGoogle Scholar
  31. Grandi G, Colombo G, Chicca M (2003) Immunocytochemical studies on the pituitary gland of Anguilla anguilla L., in relation to early growth stages and diet-induced sex differentiation.Gen. Comp. Endocrinol. 113: 413–428.Google Scholar
  32. Goksøyr A, Förlin L (1992) The cytochrome P450 system in fish, aquatic toxicology and environmental monitoring. Aquat. Toxicol. 22: 287–312.CrossRefGoogle Scholar
  33. Greichus YA, Call DJ, Ammann BM (1975) Physiological effects of polychlorinated biphenyls or a combination of DDT, DDD, and DDE in penned white pelicans. Arch. Environ. Contam. Toxicol. 3: 330–343.PubMedCrossRefGoogle Scholar
  34. Grinwis GC, Van den Brandhof EJ, Engelsma MY, Kuiper RV, Vaal MA, Vethaak AD, Wester PW, Vo s JG (2001) Toxicity of PCB-126 in European Flounder (Platichthys flesus) with emphasis on histopathology and cytochrome P4501A induction in several organ systems.Arch. Toxicol. 75: 80–87.PubMedCrossRefGoogle Scholar
  35. Guiney PD, Melancon MJ Jr, Lech JJ, Peterson RE (1979) Effects of egg and sperm maturation and spawning on the distribution and elimination of a polychlorinated biphenyl in rainbow trout (Salmo gairdneri). Toxicol. Appl. Pharmacol. 47(2): 261–272.PubMedCrossRefGoogle Scholar
  36. Hahn ME, Stegeman JJ (1994) Regulation of cytochrome P450 A1 in teleost: sustained induction of CYP1A1 mRNA, protein and catalytic activity by 2,3,7,8-tetrachlorodibenzo-p-dioxin in the marine fish Stenotomous chrysops. Toxicol. Appl. Pharmacol. 127: 187–198.PubMedCrossRefGoogle Scholar
  37. Haiber G, Schöler HF (1994) Identification of di-o,o'-cl-,mono-o-cl-and non-o-cl-substituted PCB congeners in neckar river fish. Chemosphere 28: 1913–1919.CrossRefGoogle Scholar
  38. Helder T (1980) Effects of 2,3,7,8-tetratchlorodibenzo-p-dioxin (TCDD) on early life stages of the pike (Esox lucius L.) Sci. Total Environ. 14: 255–264.CrossRefGoogle Scholar
  39. Hendriks AJ, Pieters H, De Boer J (1998) Accumulation of Metals, Polycyclic (Halogenated)Aromatic Hydrocarbons, and Biocides in Zebra Mussel and Eel from the Rhine and Meuse Rivers. Environ. Toxicol. Chem. 17: 1885–1898CrossRefGoogle Scholar
  40. Hernandez LM, Rico MC, Gonzalez MJ, Montero MC, Fernandez MA (1987) Residues of orga-nochlorine chemicals and concentrations of heavy metals in ciconiform eggs in relation to diet and habitat. J. Environ. Health B22(2): 245–258.CrossRefGoogle Scholar
  41. Hodson PV, Castonguay M, Couillard CM, Desjardins C, Pelletier E, McLeod R (1994) Spatial and temporal variations in chemical contamination of American eels, Anguilla rostrata, captured in the estuary of the St Lawrence River. Can. J. Fish. Aquat. Sci. 51: 464–478.CrossRefGoogle Scholar
  42. Hogan JW, Brauhn JL (1975) Abnormal rainbow trout fry from eggs containing high residues of a PCB (Aroclor 1242). Prog. Fish-Cult. 37: 229–230.CrossRefGoogle Scholar
  43. Holden AV, Marsden K (1967) Organochlorine pesticides in seals and porpoises. Nature, Lond.216: 1274–1276.CrossRefGoogle Scholar
  44. Holmes DC, Simmons JH, Tatton JOG (1967) Chlorinated hydrocarbons in British wildlife.Nature, Lond. 216: 227–229.CrossRefGoogle Scholar
  45. Hontela A, Rasmussen JB, Audet C, Chevalier G (1992) Impaired cortisol stress response in fish from environments polluted by PAHs, PCBs and mercury, Arch. Environ. Contam. Toxicol.22: 278–283.PubMedCrossRefGoogle Scholar
  46. Hontela A, Dumont P, Duclos D, Fortin R (1995) Endocrine and metabolic dysfunction in yellow perch (Perca flavescens) exposed to organic contaminants and heavy metals in the St. Lawrence river. Environ. Toxicol. Chem. 14: 725–731.CrossRefGoogle Scholar
  47. Huschenbeth E (1977) Uberwachung der Speicherung von chlorierten Kohlenwasserstoffen im Fisch. Fischereiwiss. 28: 173–186.Google Scholar
  48. Hutzinger O, Nash DM, Safe S, Defritas ASW, Norstrum RJ, Wildish DJ, Zitko V (1972)Polychlorinated biphenyls: metabolic behavior of pure isomers in pigeons, rats and brook trout. Science 178: 312–314.PubMedCrossRefGoogle Scholar
  49. Hwang PP, Wu SM (1993) Role of cortisol in hypo-osmoregulation in larvae of tilapia (Oreochromis mossambicus). Gen. Comp. Endocrinol. 92: 318–324.PubMedCrossRefGoogle Scholar
  50. Janssen PAH, Lambert JGD, Goos HJTh (1995) The annual ovarian cycle and the influence of pollution on vitellogenesis in the flounder, Pleuronectus flesus (L.) J. Fish Biol. 47: 509–523.CrossRefGoogle Scholar
  51. Janssen PAH (1996) Reproduction of the flounder, Platichthys flesus (L.), in relation to environmental pollution. Steroids and vitellogenesis. Ph.D. thesis Universiteit Utrecht, 174 pp.Google Scholar
  52. Jensen S (1966). Report of a new chemical hazard. New Sci. 32: 612.Google Scholar
  53. Jensen S, Johanson N, Olsson M (1970) DDT and PCB in marine animals from Swedish waters, Nature, Lond. 224: 247–250.CrossRefGoogle Scholar
  54. Jimenez BD, Burtis LS (1989) Influence of environmental variables on the hepatic mixed function oxidase system in the bluegill sunfish (Lepomis macrochirus). Comp. Biochem. Physiol. 93: 11–21.Google Scholar
  55. Jimenez BD, Burtis LS, Ezell GH, Egan BZ, Lee NE, Beauchamp JJ, McCarthy JF (1988) The mixed function oxidase system of bluegill sunfish Lepomis macrochirus: correlation of activities in experimental and wild fish. Environ. Toxicol. Chem. 7: 623–634.CrossRefGoogle Scholar
  56. Jimenez BD, Stegeman JJ (1990) Detoxification enzymes as indicators of environmental stress on fish. Am. Fisher. Soc. Symp. 8: 67–79.Google Scholar
  57. Johansson N (1970) PCB — indications of effects on fish, pp. 58–68. Proceedings of the PCB Conference, Stockholm, Sweden, September 29, 1970.Google Scholar
  58. Kafafi SA, Afeefy HY, Ali AH, Said HH, Kafafi G (1993) Binding of polychlorinated biphenyls to the aryl hydrocarbon receptor. Environ. Health Persp. 101: 422–428.CrossRefGoogle Scholar
  59. Kennish MJ, Belton TJ, Hauge P, Lockwood K, Ruppel BE (1992) Polychlorinated biphenyls in estuarine and coastal marine waters of New Jersey: a review of contamination problems. Rev. Sci. Aquat. 6: 275–293.Google Scholar
  60. Klamer J, Laane RWPM, Marquenie JM (1991) Sources and fate of PCBs in the North Sea: a review of available data. Wat. Sci. Tech. 24:77–85.Google Scholar
  61. Kleeman JM, Olson JR, Chen SM, Peterson RE (1988) Species differences in 2,3,7,8-tetrachlo-rodibenzo-p-dioxin toxicity and biotransformation in fish. Toxicol. Appl. Pharmacol. 83: 391–401.CrossRefGoogle Scholar
  62. Kleinow KM, Melancon MJ, Lech JJ (1987) Biotransformation and induction: implications for toxicity, bioaccumulation and monitoring of environmental xenobiotics in fish. Environ. Health Persp. 71: 105–119.CrossRefGoogle Scholar
  63. Knights B (1997) Risk assessment and management of contamination of eels (Anguilla spp.) by persistent xenobiotic organochlorine compounds. Chem. Ecol. 13: 171–12.CrossRefGoogle Scholar
  64. Kruse R, Boek K,Wolf M (1983) Der Gehalt an Organchlor Pestiziden and Polychlorierten Biphenylen in Elbaalen. Arch. Lebensmitelhyg. 34: 81–86.Google Scholar
  65. Leatherland JF (1985) Studies of the correlation between stress-response, osmoregulation and thyroid physiology in rainbow trout, Salmo gairdnerii (Richardson). Comp. Biochem. Physiol. 80A(4): 523–531.CrossRefGoogle Scholar
  66. Leatherland JF (1987) Lowering of serum thyroxine and triiodothyronine levels in yearling coho salmon, Oncorhynchus kisutch, by dietary mirex and PCBs. J. Fish. Res. Can. 35(10): 1285–1289.Google Scholar
  67. Lu AYH, Kuntzman R, Conney AH (1976) The liver microsomalhydroxylation enzyme system. In: Frontiers of Gastrointestinal Research (van der Reis, L. ed.), vol. 2, pp1–31, Karger, Basel.Google Scholar
  68. Maes GE, Raeymakers JAM, Pampoulie C, Seynaeve A, Goemans G, Belpaire C, Volckaert FAM (2005) The catadromous European eel Anguilla anguilla (L.) as a model for freshwater evolutionary ecotoxicology: Relationship between heavy metal bioaccumulation, condition and genetic variability. Aquat. Toxicol. 73: 99–114.PubMedCrossRefGoogle Scholar
  69. Mason CF (1993) Organochlorine pesticide residues and PCBs in eels Anguilla anguilla from some British reedbeds. Chemosphere 26:2289–2292.CrossRefGoogle Scholar
  70. McKinney JD, Waller CL (1994) Polychlorinated biphenyls as hormonally active structural analogues. Environ. Health Persp. 102: 290–297.Google Scholar
  71. Melancon MJ Jr, Lech JJ (1976) Isolation and identification of a polar metabolite of tetrachloro-biphenyl from bile of rainbow trout exposed to 14C-tetrachlorobiphenyl. Bull. Environ. Contam. Toxicol. 15: 181–188.PubMedCrossRefGoogle Scholar
  72. Melancon MJ, Elcombe CR, Vodicnik MJ, Lech JJ (1981) Induction of cytochromes P-450 and mixed-function oxidase activity by polychlorinated biphenyls and á-naphthoflavone in carp (Cyprinus carpio). Comp. Biochem. Physiol. 69C: 219–226.Google Scholar
  73. Monod G, Gevaux A, Riviere JL (1988) Effects of chemical pollution on the activities of hepatic xenobiotic metabolising enzymes in fish from the river Rhone France. Sci. Total Environ. 73: 189–202.PubMedCrossRefGoogle Scholar
  74. Murk AJ, Van den Berg JHJ, Fellinger M, Rozemeijer MJC, Swennen C, Duiven P, Boon JP, Brouwer A, Koeman JH (1994) Toxic and biochemical effects of 3,3′,4,4′-tetrachlorobiphenyl (CB 77) and Cophen A50 on eider ducklings (Somateria mollissima) in a semi-field experiment. Environ. Pollut. 86: 21–30.PubMedCrossRefGoogle Scholar
  75. Murk AJ, Leonards PEG, Hattum B, van Luit R, Van der Weiden MEJ, Smit M (1998) Application of biomarkers for exposure and effect of polyhalogenated aromatic hydrocarbons in naturally exposed European otters (Lutra lutra). Environ., Toxicol. Pharmacol. 6: 91–102.CrossRefGoogle Scholar
  76. Nakata H, Sakakibara A, Kanoh M, Kudo S, Watanabe H, Miyazaki N, Asano Y, Tanabe S (2002) Evaluation of mitogen-induced responses in marine mammals and human lymphocytes by in-vitro exposure to butyltins and non-ortho coplanar PCBs. Environ. Pollut. 120: 245–253.PubMedCrossRefGoogle Scholar
  77. Palstra AP, Cohen EGH, Niemantsverdriet PRW, Van Ginneken VJT, Van den Thillart GEEJM (2005) Artificial maturation and reproduction of European silver eel: development of oocytes during final maturation. Aquaculture 249: 533–547.CrossRefGoogle Scholar
  78. Palstra AP, van Ginneken VJT, Murk AJ, Van den Thillart GEEJM (2006) Are dioxin-like contaminants responsible for the eel (Anguilla anguilla) drama? Naturwissenschaften 93(3): 145–148.PubMedCrossRefGoogle Scholar
  79. Payne JF, Penrose WR (1975) Induction of aryl hydrocarbon benzo(a)pyrene hydroxylase in fish by petroleum. Bull. Environ. Contam. Toxicol. 14: 112–116.PubMedCrossRefGoogle Scholar
  80. Payne JF, Fancey LL, Rahimtula AD, Porter EL (1987) Review and perspective on the use of mixed-function oxygenase enzymes in biological monitoring. Comparative Biochemistry and Physiology C, Comp. Pharmacol. Toxicol. 86: 233–245.Google Scholar
  81. Pedersen BH (2003) Induced sexual maturation of the European eel Anguilla anguilla and fertilization of the eggs. Aquaculture 224: 323–338.CrossRefGoogle Scholar
  82. Pedersen BH (2004) Fertilization of eggs, rate of embryonic development and hatching following induced maturation of the European eel Anguilla anguilla. Aquaculture 237: 461–473.CrossRefGoogle Scholar
  83. Pieters H, Van Leeuwen SPJ, De Boer J (2001) Contamination of eel and pike-perch: monitoring program for the Dutch anglers 2000. RIVO Report C064/01 Wageningen University, 17 pp.Google Scholar
  84. Pelletier C, Doucet E, Imbeault P, Tremblay A (2002) Associations between weight loss-induced changes in plasma Organochlorine Concentrations, Serum T3 concentrations, and resting metabolic rate. Toxicol. Sci. 67: 46–51.PubMedGoogle Scholar
  85. Quabius ES, Balm PHM, Wendelaar Bonga SE (1997) Interrenal stress responsiveness of tilapia (Oreochromis mossambicus) is impaired by dietary exposure to PCB 126. Gen. Comp. Endocrinol. 108: 472–482.PubMedCrossRefGoogle Scholar
  86. Rahman MS, Bowadt S, Larsen B (1993) Dual-column GC analysis of Mediterranean fish for ten organochlorine pesticides and sixty two chlorobiphenyls. J. High Res. Chrom. 16: 731–735.CrossRefGoogle Scholar
  87. Redding JM, DeLuze A, LeLoup-Hatey J, LeLoup J (1986) Suppression of plasma thyroid concentrations by cortisol in the European eel Anguilla anguilla. Comp. Biochem. Physiol. 83A: 409–413.CrossRefGoogle Scholar
  88. Regala RP, Rice CD, Schwedler TE, Dorociak IR (2001) The effects of tributyltin (TBT) and 3,3Э4,4Э5-pentachlorobiphenyl (PCB-126) mixtures on antibody responses and phagocyte oxi-dative burst activity in channel catfish, Ictalurus punctatus. Arch. Environ. Con. Toxicol. 40: 386–391.CrossRefGoogle Scholar
  89. Rice CD, Schlenk D (1995) Immune function and cytochrome P4501A activity after acute exposure to 3,3Э4Э,5-Pentachlorobiphenyl (PCB 126) in channel catfish. J. Aquat. Anim. Health 7: 195–204.CrossRefGoogle Scholar
  90. Risebrough RW, Reiche P, Peakall DB, Herman SG, Kerven MN (1968) Polychlorinated biphenyls in the global system. Nature 220: 1098–1102.PubMedCrossRefGoogle Scholar
  91. Robinet T, Feunteun E (2002) Sublethal effects of exposure to chemical compounds: a cause for the decline in Atlantic eels? Ecotoxicology 265–277.Google Scholar
  92. Ryan JJ, Lau PY, Pilon JC, Lewis D, McLeod HA, Gervals A (1984) Incidence and levels of 2,3,7,8-tetrachlorodibenzo-p-dioxin in Lake Ontario commercial fish. Environ. Sci. Technol. 18: 719–721.CrossRefGoogle Scholar
  93. Safe S (1984) Polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs): biochemistry, toxicology and mechanism of action. Crit. Rev. Toxicol. 13: 319–395.PubMedCrossRefGoogle Scholar
  94. Safe S (1990) Polychlorinated biphenyls (PCBs), dibenze-p-dioxins (PCDDs), dibenzofurans (PCDFs), and related compounds: Environmental and mechanistic considerations which support the development of toxic equivalence factors (TEFs). Crit. Rev. Toxicol. 21(10): 51–88.PubMedCrossRefGoogle Scholar
  95. Sims GG, Campell JR, Zemlyak F, Graham JM (1977) Organochlorine residues in fish and fishery products from the Northwest Atlantic. Bull. Environ. Contam. Toxicol. 18: 697–705.PubMedCrossRefGoogle Scholar
  96. Sivarajah K, Franklin CS, Williams WP (1978) The effects of polychlorinated biphenyls on plasma steroid levels and hepatic microsomal enzymes in fish. J. Fish. Biol. 13: 401–409.CrossRefGoogle Scholar
  97. Sloan RJ, Simpson KW, Schroeder RA, Barnes CR (1983) Temporal trends toward stability of Hudson River PCB contamination. Bull. Environ. Contam. Toxicol. 31: 377–385.PubMedCrossRefGoogle Scholar
  98. Soontornchat S, Li M-H, Cooke PS, Hansen LG (1994) Toxicokinetic and toxicodynamic influences on endocrine disruption by polychlorinated biphenyls. Environ. Health Persp. 102: 568–571.Google Scholar
  99. Spies RB, Rice SW Jr. (1988) Effects of organic contaminants on reproduction of the starry flounder Platichthys stellatus in San Francisco Bay: 1. Hepatic contamination and mixed-function oxi-dases (MFO) activity during the reproductive season. Mar. Biol. 98: 191–200.CrossRefGoogle Scholar
  100. Spitzbergen JM, Schat KA, Kleeman JM, Peterson R (1986b) Effects of 2,3,7,8-tetrachlorodiben-zo-p-dioxin (TCDD) or Arochlor 1254 on the resistance of rainbow trout, Salmo gairdneri T, to infectious haematopoietic necrosis virus. J. Fish Dis. 11: 73–83.CrossRefGoogle Scholar
  101. Spitzbergen JM, Schat KA, Kleeman JM, Peterson R (1986a) Interactions of 2,3,7,8-tetrachlorod-ibenzo-p-dioxin (TCDD) with immune responses of rainbow trout. Vet. Immunol. Immunopathol. 12: 263–280.CrossRefGoogle Scholar
  102. Spitzbergen JM, Walker MK, Olson JR, Peterson RE (1991) Pathologic alterations in early life stages of lake trout, Salvelinus namaycush, exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin as fertilized eggs. Aquat. Toxicol. 19: 41–72.CrossRefGoogle Scholar
  103. Stegeman JJ, Pajor AM, Thomas P (1982) Influence of estradiol and testosterone on cytochrome P-450 and monooxygenase activity in immature brook trout, Salvelinus fontinalis. Biochem. Pharmacol. 31: 3979–3989.PubMedCrossRefGoogle Scholar
  104. Stegeman JJ, Kloepper-Sams PJ (1987) Cytochrome P-450 and monooxygenase activity in aquatic animals. Environ. Health Persp. 71: 87–95.CrossRefGoogle Scholar
  105. Stouthart XJHX, Huijbregts MAJ, Balm PHM, Lock RAC, Wendelaar Bonga, SE (1998) Endocrine stress response and abnormal development in carp (Cyprinus carpio) larvae after exposure of the embryos to PCB 126. Fish Physiol. Biochem. 18: 321–329.CrossRefGoogle Scholar
  106. Subramanian AN, Tanabe S, Tatsukawa R, Saito S, Miykazaki N (1987) Reduction in the testosterone levels by PCBs and DDE in Dall's porpoises of North-western Pacific. Mar. Pollut. Bull. 18: 643–646.CrossRefGoogle Scholar
  107. Sullivan C V, Iwamoto RN, Dickhoff WW (1987) Thyroid hormones in blood plasma of developing salmon embryos. Gen. Comp. Endocrin. 65: 337–345.CrossRefGoogle Scholar
  108. Sures B, Knopf K (2004) Individual and combined effects of cadmium and 3,3',4,4'-5-pentachlo-robiphenyl (PCB 126) on the humoral immune response in European eel (Anguilla anguilla) experimentally infected with larvae of Anguillicola crassus. Parasitology 128:445–454.PubMedCrossRefGoogle Scholar
  109. Taysse L, Chambras C, Marionnet D, Bosgiraud C, Deschaux P (1998) Basal level and induction of Cytochrome P450, EROD, UDPGT, and GST activities in Carp (Cyprinus carpio) immune organs (Spleen and Head Kidney). Bull. Environ. Contam. Toxicol. 60:300–305.PubMedCrossRefGoogle Scholar
  110. Tesch WW (1977) “The eel”, Biology and Management of Anguillid Eels, Chapman & Hall, London, 434 pp.Google Scholar
  111. Thomas P (1988) Reproductive endocrine function in female Atlantic croaker exposed to pollutants. Mar. Environ. Res. 35: 47–95.Google Scholar
  112. Tulonen J, Vuorinen PK (1996) Concentrations of PCBs and other organochlorine compounds in eels (Anguilla anguilla L.) of the Vanajavesi watercourse in southern Finland, 1990–1993. Sci. Total. Environ. 187: 11–18.CrossRefGoogle Scholar
  113. USFWS (1981) Chlorinated hydrocarbons as a factor in the reproduction and survival of lake trout (Salvelinus namaycush) in Lake Michigan. U.S. Fish and Wildlife Service Tech. Paper, 105, 42 pp.Google Scholar
  114. Van der Weiden MEJ (1993) Cytochrome P450 1A induction in carp as a biological indicator for the aquatic contamination of chlorinated polyaromatics. Ph.D. thesis, Utrecht University, Research Institute Toxicology, ISBN 90-393-0376-2.Google Scholar
  115. Van Ginneken V, Vianen G, Muusze B, Verschoor L, Lugten O, Onderwater M, Van Schie S, Niemantsverdriet P, Van Heeswijk R, Eding E, Van den Thillart G (2005a) Gonad development and spawning behaviour of artificially matured European eel (Anguilla anguilla L.). Anim. Biol. 55: 203–218.CrossRefGoogle Scholar
  116. Van Ginneken V, Antonissen E, M ü ller UK, Booms R, Eding E, Verreth J, Van den Thillart G (2005b) Eel migration to the Sargasso: remarkably high swimming efficiency and low energy costs. J. Exp. Biol. 208: 1329–1335.CrossRefGoogle Scholar
  117. Van Ginneken V (2006) Simulated migration of European eel (Anguilla anguilla, Linnaeus 1758). Ph.D. thesis, Wageningen University, The Netherlands, 309 pp. ISBN: 90-8504-456-1.Google Scholar
  118. Van Ginneken V, Dufour S, Sbaihi M, Balm P, Noorlander K, de Bakker M, Doornbos J, Palstra A, Antonissen E, Mayer, I. van den Thillart G (2007) Does 5500-km swim trial stimulate early sexual maturation in the European eel (Anguilla anguilla L.)? Comp. Biochem. Physiol. A 147: 1095–1103.CrossRefGoogle Scholar
  119. Van Leeuwen CJ, Hermens JLM (1995) eds. Risk Assessment of Chemicals: An Introduction. 374 pp. Kluwer, Dordrecht, ISBN: 0-7923-3740-9.Google Scholar
  120. Van Straalen NM, van Verkleij JAC (red.) (1993) Teaching Book Oecotoxicology, IVM-publication, R-91/16, VU-publishers, Amsterdam; ISBN 90-5383-083-9, 423 pp.Google Scholar
  121. Vethaak AD, Reinhalt T (1992) Fish disease as a monitor for marine pollution: the case of the North Sea. Rev. Fish Biol. Fisher. 2: 1–32.CrossRefGoogle Scholar
  122. Vijayan MM, Leatherland JF (1989) Cortisol-induced changes in plasma glucose, protein, and thyroid hormone levels, and liver glycogen content of coho salmon (Oncorhynchus kisutch Walbaum). Can. J. Zool. 67: 2746–2750.CrossRefGoogle Scholar
  123. Vilter V (1946) Action de la thyroxine sur la metamorphose larvaire de l'anguille. CR Soc. Biol. Paris 140: 783–785.Google Scholar
  124. Walker MK, Peterson RE (1991) Potencies of polychlorinated dibenzo-p-dioxin, dibenzofuran and biphenyl congeners, relative to 2,3,7,8-tertachlorodibenzo-p-dioxin, for producing early life stage mortality in rainbow trout (Oncorhynchus mykiss), Aquat. Toxicol. 21: 219–238.Google Scholar
  125. Walker MK, Cook PM, Batterman AR, Butterworth BC, Berini C, Libal JJ, Hufnagle LC Peterson RE (1994) Translocations of 2,3,7,8-tertachlorodibenzo-p-dioxin from adult female Lake Trout (Salvelinus namacycush) to oocytes: effects on early life stage development and sac fry survival. Can. J. Fisher. Aquat. Sci. 51: 1410–1419.CrossRefGoogle Scholar
  126. Walker MK, Peterson RE (1994) Toxicity of 2,3,7,8- tetrachlorodibenzo-p-dioxin to brook trout (Salvelinus fontinalis) during early development. Environ. Toxicol. Chem. 13: 817–820.CrossRefGoogle Scholar
  127. Walton DG, Fancey LL, Green JM, Kiceniuk JW, Penrose WR (1983) Seasonal changes in aryl hydrocarbon hydroxylase activity of a marine fish Tautogolabrus adspersus (Walbaum) with and without petroleum exposure. Comparative Biochemistry and Physiology C, Comp. Pharmacol. Toxicol. 76: 247–253.Google Scholar
  128. Warriner JE, Mathews ES, Weeks BA (1988) Preliminary investigations of the chemiluminescent respons in normal and pollutant-exposed fish. Mar. Environ. Res. 24: 281–284.CrossRefGoogle Scholar
  129. Weatherley NS, Davies GL, Ellerly S (1997) Polychlorinated biphenyls and organochlorine pesticides in eels (Anguilla anguilla L.) from Welsh Rivers. Environ. Poll. 95: 127–134.CrossRefGoogle Scholar
  130. Weber GW, Okimoto DK, Richman NH, Grau EG (1992) Patterns of thyroxine and triiodothyro-nine in serum and follicle-bound oocytes of the tilapia, Oreochromis mossambicus during oogenesis. Gen. Comp. Endocrinol. 85: 392–404.PubMedCrossRefGoogle Scholar
  131. Weeks BA, Huggett RJ, Warriner JE, Methews ES (1990) Macrophage responses of estuarine fish as bioindicators of toxic contamination. In Biomarkers of Environmental Contamination (McCarthy JF, Shugart LR, eds.), pp. 193–201. Boca Raton, FL: Lewis Publishers.Google Scholar
  132. Wendelaar Bonga SE, Lock RAC (1992) Toxicants and osmoregulation in fish. The Netherlands. J. Zool. 42: 478–493.Google Scholar
  133. Wiesm ü ller T, Schlatterer B (1999) PCDDs/PCDFs and coplanar PCBs in eels (Anguilla anguilla) from different areas of the rivers Havel and Oder in the state of Brandenbourg. Chemosphere 38: 325–334.PubMedCrossRefGoogle Scholar
  134. Wren CD (1991) Cause-effect linkages between chemicals and populations of mink (Mustela vison) and otter (Lutra canadensis) in the Great Lakes basin. J. Toxicol. Environ. Health 33:549–585.PubMedCrossRefGoogle Scholar
  135. Yamamoto K, Yamauchi K (1974) Sexual maturation of Japanese eel and production of eel larvae in the aquarium. Nature 251: 220–221.PubMedCrossRefGoogle Scholar
  136. Yamauchi K, Nakamura M, Takahashi H, Takano, K. (1976) Cultivation of larvae of Japanese eel.Nature 263: 412.PubMedCrossRefGoogle Scholar
  137. Zabel EW, Cook PM, Peterson RE (1995) Potency of 3,3',4,4',5-pentachlorobiphenyl (PCB 126),alone and in combination with 2,3,7,8- tetrachlorodibenzo-p-dioxin (TCDD), to produce late trout early life mortality. Environ. Toxicol. Chem. 14: 2175–2179.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  • Vincent van Ginneken
    • 1
  • Maarten Bruijs
    • 2
  • Tinka Murk
    • 3
  • Arjan Palstra
    • 1
  • Guido van den Thillart
    • 1
  1. 1.Institute of Biology Leiden van der Klaauw LaboratoriesIntegrative ZoologyRA LeidenThe Netherlands
  2. 2.KEMA Technical and Operational ServicesArnhemThe Netherlands
  3. 3.Dept Toxicology SectionWageningen UniversityThe Netherlands

Personalised recommendations