Spawning Migration of the European Eel pp 333-362

Part of the Fish & Fisheries Series book series (FIFI, volume 30) | Cite as

Testis Development, Sperm Quality Evaluation and Cryopreservation in the European Eel

  • Luz Pérez
  • David Peñaranda
  • Víctor Gallego
  • Juan Asturiano

Since the European eel Anguilla anguilla L. cannot be bred in captivity, eel farms base their annual production on the capture of glass eels from river mouths in autumn and winter. This species has suffered a dramatic reduction in its populations, due to intensive capture of both glass eels and adults, resulting in increased cost for the annual renewal of glass eel stocks. Moreover, populations have been decreasing owing to several other factors (Feunteun 2002), such as massive exportation to other countries, the deterioration of their natural habitats and the importation of allochthonous parasites (Anguillicola crassus Kuwahara, Niimi and Itagaki 1974) from the Asian species (Koops and Hartmann 1989; Kennedy and Fitch 1990). Therefore, the development of methods for the reproduction of this species is necessary not only from an economical point of view, to meet the demands of fish farms, but also from an ecological point of view, to reduce the pressure on natural populations. In view of this, our group has centred its research since 1997 on trying to develop several techniques to help in the production of this species in captivity. Firstly, some experiments were carried out to develop maturation-inducing hormonal methods for males. The second step was the use of different techniques to evaluate the quality of the gametes, looking for fast and accurate results. At the same time, the development of hormonal induction protocols and the induction of spawning in the females made necessary the synchronization of gamete production. With the intention of solving this problem, we tackled sperm cryopreservation. Study of the physico-chemical characteristics of seminal plasma in good quality sperm samples was the basis for the design of cryopreservation media. Later, different factors such as the ionic composition, pH, cryoprotectants, or the presence of protective proteins, as well as different freezing-thawing methods, have been considered to try to improve spermatozoa survival post-cryopreservation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agca Y, Gilmore J, Byers M, Woods EJ, Liu J, Critser JK (2002) Osmotic characteristics of mouse spermatozoa in the presence of extenders and sugars. Biol. Reprod. 67:1493–1501PubMedCrossRefGoogle Scholar
  2. Anchordoguy T, Carpenter JF, Loomis SH, Crowe JH (1988) Mechanisms of interaction of amino acids with phospholipid bilayers during freezing, Biochim. Biophys. Acta 964:299–306Google Scholar
  3. Asturiano JF, Sorbera LA, Ramos J, Kime DE, Carrillo M, Zanuy S (2000) Hormonal regulation of the European sea bass (Dicentrarchus labrax, L.) reproductive cycle: an individualized female approach. J. Fish Biol. 56:1155–1172CrossRefGoogle Scholar
  4. Asturiano JF, Pérez L, Tomás A, Zegrari S, Espinós FJ, Jover M (2002a) Inducción hormonal de la maduración gonadal y puesta en hembras de anguila europea (Anguilla anguilla): primeros resultados. Boletín IEO 18:127–137 (in Spanish)Google Scholar
  5. Asturiano JF, Sorbera LA, Ramos J, Kime DE, Carrillo M, Zanuy S (2002b) Group-synchronous ovarian development, spawning and spermiation in the European sea bass (Dicentrarchus labrax L.) could be regulated by shifts in gonadal steroidogenesis. Sci. Mar. 66(3):273–282Google Scholar
  6. Asturiano JF, Pérez L, Marco-Jiménez F, Olivares L, Vicente JS, Jover M (2003) Media and methods for the cryopreservation of European eel (Anguilla anguilla) sperm. Fish Physiol. Biochem. 28:501–502CrossRefGoogle Scholar
  7. Asturiano JF, Pérez L, Garzón DL, Marco-Jiménez F, Peñaranda DS, Vicente JS, Jover M. (2004) Physio-chemical characteristics of seminal plasma and development of media and methods for the cryopreservation of European eel sperm. Fish Physiol. Biochem. 30:283–293CrossRefGoogle Scholar
  8. Asturiano JF, Pérez L, Garzón DL, Peñaranda DS, Marco-Jiménez F, Martínez-Llorens S, Tomás A, Jover, M (2005) Effect of different methods for the induction of spermiation on semen quality in European eel. Aquac. Res. 36:1480–1487CrossRefGoogle Scholar
  9. Sturiano JF, Marco-Jiménez F, Pérez L, Balasch S, Garzín DL, Peñaranda DS, Vicente JS, Viudes de Castro MP, Jover M (2006) Effects of hCG as spermiation inducer on European eel semen quality. Theriogenology 66:1012–1020CrossRefGoogle Scholar
  10. Asturiano JF, Marco-Jiménez F, Peñaranda DS, Garzín DL, Pérez L, Vicente JS, Jover M (2007) Effect of sperm cryopreservation on the European eel sperm viability and spermatozoa morphology. Reprod. Domest. Anim. 42:162–166PubMedCrossRefGoogle Scholar
  11. Auger J, Ronot X, Dadoune JP (1989) Human sperm mitochondrial function related to motility: a flow and image cytometric assessment. J. Androl. 10:439–448PubMedGoogle Scholar
  12. Baker HWG, Clarke GN (1987) Sperm Morphology: Consistency of assessment of the same sperm by different observers. Clin. Reprod. Fertil. 5:37–43PubMedGoogle Scholar
  13. Ball A, Mohammed HO (1995) Morphometry of stallion spermatozoa by computer-assisted image analysis. Theriogenology 44:367–377PubMedCrossRefGoogle Scholar
  14. Basavaraja N, Hegde SN (2004) Cryopreservation of the endangered mahseer (Tor Khudree) spermatozoa: I. Effect of extender composition, cryoprotectants, dilution ratio, and storage period on post-thaw viability. Cryobiology 49:149–156PubMedCrossRefGoogle Scholar
  15. Beesley SG, Costanzo JP, Lee Jr RE (1998) Cryopreservation of spermatozoa from freeze-tolerant and -intolerant anurans. Cryobiology 37:155–162PubMedCrossRefGoogle Scholar
  16. Billard R (1983) Ultrastructure of trout spermatozoa: changes after dilution and deep-freezing. Cell Tissue Res. 228:205–218PubMedCrossRefGoogle Scholar
  17. Billard R, Cosson J, Linhart O (2000) Changes in the flagellum morphology of intact and frozen/ thawed Siberian sturgeon Acipenser baerii (Brandt) sperm during motility. Aquac. Res. 31:283–287CrossRefGoogle Scholar
  18. Blank M, Soo L, Britten JS (1976) Absorption of albumin on rabbit sperm membranes. J. Membr. Biol. 29:401–409PubMedCrossRefGoogle Scholar
  19. Boersma AA, Braun J, Stolla R (1999) Influence of random factors and two different staining procedures on computer-assisted sperm head morphometry in bulls. Reprod. Domest. Anim. 34:77–82CrossRefGoogle Scholar
  20. Boersma AA, Rasshofer R, Stolla R (2001) Influence of sample preparation, staining procedure and analysis conditions on bull sperm head morphometry using the morphology analyser integrated visual optical system. Reprod. Domest. Anim. 36:222–229PubMedCrossRefGoogle Scholar
  21. Bozzola JJ, Russell LD (1991) Electron Microscopy. Editorial Jones & Bartlett, Boston, MAGoogle Scholar
  22. Buendía P, Soler C, Paolicchi F, Gago G, Urquieta B, Pérez-Sánchez F, Bustos-Obregín E (2002) Morphometric characterisation and classification of alpaca sperm heads using the Sperm-Class Analyser1 computer assisted system. Theriogenology 57:1207–1218PubMedCrossRefGoogle Scholar
  23. Cabrita E, Anel L, Herráez MP (2001) Effect of external cryoprotectants as membrane stabilizers on cryopreserved rainbow trout sperm. Theriogenology 56:623–635PubMedCrossRefGoogle Scholar
  24. Cabrita E, Robles V, Cuñado S, Wallace JC, Sarasquete C, Herráez MP (2005) Evaluation of gilthead sea bream, Sparus aurata, sperm quality after cryopreservation in 5 ml macrotubes. Cryobiology 50:273–284PubMedCrossRefGoogle Scholar
  25. Christen R, Schackmann RW, Shapiro BM (1982) Elevation of the intracellular pH activates respiration and motility sperm of the sea urchin, Strongylocentrotus purpuratus. J. Biol. Chem. 257:14881–14890PubMedGoogle Scholar
  26. Christen R, Gatti JL, Billard R (1987) Trout sperm motility. The transient movement of trout sperm is related to changes in the concentration of ATP following the activation of the flagellar movement. Europ. J. Biochem. 166:667–671PubMedCrossRefGoogle Scholar
  27. Claassens OE, Kaskar K, Coetzee K, Lombard CJ, Franken DR, Kruger TF (1996) Comparison of motility characteristics and normal sperm morphology of human semen samples separated by percoll density gradient centrifugation. Arch. Androl. 36:127–132PubMedCrossRefGoogle Scholar
  28. Coetzee K, Kruge TF, Lombard CJ (1998) Predictive value of normal morphology: a structured literature review. Hum. Reprod. Update 4:73–82PubMedCrossRefGoogle Scholar
  29. Çolak A, Yamamoto K (1974) Ultrastructure of the Japanese eel spermatozoon. Annotationes Zool. Jpn. 47:48–54Google Scholar
  30. Colombo G, Grandi G, Romeo A, Giovannini A, Pelizzola D, Catozzi L, Pifanelli A (1987) Testis cytological structure, plasma sex steroids and gonad cytosol free steroid receptors of heterolo-gous gonadotropin (hCG)-stimulated silver eels, Anguilla anguilla L. Gen. Comp. Endocrinol. 65:167–178.PubMedCrossRefGoogle Scholar
  31. Colombo G, Grandi G (1996) Histological study of the development and sex differentiation of the gonad in the European eel. J. Fish Biol. 48(3):493–512CrossRefGoogle Scholar
  32. Colombo G, Grandi G, Rossi G (1984) Gonad differentiation and body growth in Anguilla anguilla L. J. Fish Biol. 24:215–228CrossRefGoogle Scholar
  33. Crowe JH, Carpenter JF, Crowe LM, Anchordoguy TJ (1990) Are freezing and dehydration similar stress vectors? A comparison of modes of interaction of stabilizing solutes with biomole-cules. Cryobiology 27:219–231CrossRefGoogle Scholar
  34. Dahlbom M, Andersson M, Vierula M, Alanko M (1997) Morphometry of normal and teratozo-ospermic canine sperm heads using an image analyser: work in progress. Theriogenology 48:687–698PubMedCrossRefGoogle Scholar
  35. Davis RO, Gravance CG (1993) Standardisation of specimen preparation, staining, and sampling methods improves automated sperm-head morphometry analysis. Fertil. Steril. 59:412–417PubMedGoogle Scholar
  36. Davis BK, Byrne R, Hungund B (1979) Studies on the mechanism of capacitation. II. Evidence for lipid transfer between plasma membrane of rat sperm and serum albumin during capacita-tion in vitro. Biochim. Biophys. Acta 558:257–266PubMedCrossRefGoogle Scholar
  37. Davis RO, Gravance CG, Thal DM, Miller MG (1994) Automated analysis of toxicant-induced changes in rat sperm head morphometry. Reprod. Toxicol. 8:521–529PubMedCrossRefGoogle Scholar
  38. Davis RO, Gravance CG, Overstreet JW (1995) A standardised test for visual analysis of human sperm morphology. Fertil. Steril. 63(5):1058–1063PubMedGoogle Scholar
  39. De Leeuw AM, Den Daas JH, Woelders H (1991) The fix vital stain method. Simultaneous determination of viability and acrosomal status of bovine spermatozoa. J. Androl. 12:112–118PubMedGoogle Scholar
  40. Devlin RH, Nagahama Y (2002) Sex determination and sex differentiation in Fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208:191–364CrossRefGoogle Scholar
  41. Evenson DP, Darzynkiewicz Z, Melamed MR (1982) Simultaneous measurement by flow cytom-etry of sperm cell viability and mitochondrial membrane potential related to cell motility. J. Histochem. Cytochem. 30:279–280PubMedGoogle Scholar
  42. Feunteun E (2002) Management and restoration of European eel population (Anguilla anguilla): An impossible bargain. Ecol. Eng. 18:575–591CrossRefGoogle Scholar
  43. Gago C, Pérez-Sánchez F, Yeung CH, Tablado L, Cooper TG, Soler C (1998) Standardisation of sampling and staining methods for the morphometric evaluation of sperm heads in the Cynomolgus monkey (Macaca fascicularis) using computer-assisted image analysis. Int. J. Androl. 21:169–176PubMedCrossRefGoogle Scholar
  44. Garner DL, Thomas CA (1999) Organelle-specific probe JC-1 identifies membrane potential differences in the mitochondrial function of bovine sperm. Mol. Reprod. Dev. 53:222–229PubMedCrossRefGoogle Scholar
  45. Garner DL, Pinkel D, Johnson LA, Pace MM (1986) Assessment of spermatozoal function using dual fluorescent staining and flow cytometric analyses. Biol. Reprod. 34:127–138PubMedCrossRefGoogle Scholar
  46. Garner DL, Johnson LA, Yue ST, Roth BL, Haugland RP (1994) Dual DNA staining assessment of bovine sperm viability using SYBR-14 and propidium iodide. J. Androl. 15:620–629PubMedGoogle Scholar
  47. Garzón DL, Peñaranda DS, Pérez L, Marco-Jiménez F, Espert X, Müller T, Jover M, Asturiano JF (2008) Effects of pH, sodium bicarbonate, cryoprotectants and FBS on the cryopreservation of European eel sperm. Reprod. Domest. Anim. 43:99–105PubMedGoogle Scholar
  48. Gibbons BH, Gibbons IR, Baccetti B (1983) Structure and motility of the 9 + 0 flagellum of eel spermatozoa. J. Submicrosc. Cytol. 15:15–20PubMedGoogle Scholar
  49. Gibbons BH, Baccetti B, Gibbons IR (1985) Live and reactivated motility of the 9 + 0 flagellum of the eel spermatozoa. J. Submicrosc. Cytol. 5:333–350Google Scholar
  50. Ginsburg AS, Billard R (1972) Ultraestructure du spermatozoïde d'Anguille. J. Microscopie 14:50–51Google Scholar
  51. Graham JK (2001) Assessment of sperm quality: a flow cytometric approach. Anim. Reprod. Sci. 68:239–247PubMedCrossRefGoogle Scholar
  52. Grandi G, Colombo G (1997) Development and early differentiation of gonad in the European eel (Anguilla anguilla [L.], Anguilliformes, Teleostei): A cytological and ultrastructural study. J. Morphol. 231:195–216CrossRefGoogle Scholar
  53. Gravance CG, Davis RO (1995) Automated sperm morphometry analysis (ASMA) in the rabbit. J. Androl. 16:88–93PubMedGoogle Scholar
  54. Gravance CG, Liu IK, Davis RO, Hughes JP, Casey PJ (1996) Quantification of normal head morphometry of stallion spermatozoa. J. Reprod. Fertil. 108(1):41–46PubMedCrossRefGoogle Scholar
  55. Gravance CG, Campion Z, Liu IK, Casey PJ (1997) Sperm head morphometry analysis of ejaculate and dismount stallion semen samples. Anim. Reprod. Sci. 47:149–155PubMedCrossRefGoogle Scholar
  56. Guraya SS (1987) Rat sperm head. In: Biology of Spermatogenesis and Spermatozoa in Mammals. Berlin/Heidelberg: SpringerGoogle Scholar
  57. Gwo JC, Gwo HH, Chang SL (1992) The spermatozoon of the Japanese eel, Anguilla japonica (Teleostei, Anguilliformes, Anguillidae). J. Submicrosc. Cytol. Pathol. 24:571–574Google Scholar
  58. Gwo J-C, Ohta H, Okuzawa K, Wu HC (1999) Cryopreservation of sperm from the endangered Formosan landlocked salmon (Oncorhynchus masou formosanus). Theriogenology 51:569–582PubMedCrossRefGoogle Scholar
  59. He S, Woods III LC (2003) Effects of glycine and alanine on short-term storage and cryopreserva-tion of striped bass (Morone saxatilis) spermatozoa. Cryobiology 46:17–25PubMedCrossRefGoogle Scholar
  60. He S, Woods III LC (2004) Effects of dimethyl sulphoxide and glycine on cryopreservation induced damage of plasma membranes and mitochondria to striped bass (LMorone saxatilis) sperm. Cryobiology 48:254–262PubMedCrossRefGoogle Scholar
  61. Johnson CH, Clapper DL, Winkler MM, Lee HC, Epel D (1983) A volatile inhibitor immobilizes sea urchin sperm in semen by depressing the intracellular pH. Dev. Biol. 98:493–501PubMedCrossRefGoogle Scholar
  62. Kennedy CR, Fitch DJ (1990) Colonisation, larval survival, and epidemiology of the nematode Anguillicola crassus, parasite in the eel Anguilla anguilla in Britain. J. Fish Biol. 36:117–131CrossRefGoogle Scholar
  63. Kime DE, Van Look KJ, McAllister BG, Huyskens G, Rurangwa E, Ollevier F (2001) Computer-assisted sperm analysis (CASA) as tool for monitoring sperm quality in fish. Comp. Biochem. Physiol. C 130:425–433Google Scholar
  64. Koops H, Hartmann F (1989) Anguillicola infestations in Germany and in German eel imports. J. Appl. Ichthyol. 1:41–45CrossRefGoogle Scholar
  65. Kruger TF, Du Toit TC, Franken DR, Menkveld R, Lombard CJ (1995) Sperm morphology: assessing the agreement between the manual method (strict criteria) and the sperm morphology analyser IVOS. Fertil. Steril. 63:134–141PubMedGoogle Scholar
  66. Labbe C, Crowe LM, Crowe JH (1997) Stability of the lipid component of trout sperm plasma membrane during freeze-thawing. Cryobiology 34:176–182CrossRefGoogle Scholar
  67. Lahnsteiner F, Weismann T, Patzner RA (1992) Fine structural changes in spermatozoa of the grayling, Thymallus thymallus (Pices: Teleostei), during routine cryopreservation. Aquaculture 103:301–304CrossRefGoogle Scholar
  68. Lee HC, Johnson C, Epel D (1983) Changes in internal pH associated with initiation of motility and acrosome reaction of sea urchin sperm. Dev. Biol. 95: 31–45PubMedCrossRefGoogle Scholar
  69. Magyary I, Urbányi B, Horváth L (1996): Cryopreservation of common carp (Cyprinus carpio L.). J. Appl. Ichthyol. 12: 117–119CrossRefGoogle Scholar
  70. Marco-Jiménez F, Pérez L, Viudes de Castro MP, Garzón DL, Peñaranda DS, Vicente JS, Jover M, Asturiano JF (2006a) Morphometry characterisation of European eel spermatozoa with computer-assisted spermatozoa analysis and scanning electron microscopy. Theriogenology 65:1302–1310CrossRefGoogle Scholar
  71. Marco-Jiménez F, Garzón DL, Peñaranda DS, Pérez L, Viudes de Castro MP, Vicente JS, Jover M, Asturiano JF (2006b) Cryopreservation of European eels (Anguilla anguilla) spermatozoa: Effect of rate dilution, foetal bovine serum supplementation and cryoprotectans. Cryobiology 53:51–57CrossRefGoogle Scholar
  72. Matsubara H, Lokman PM, Kazeto Y, Adachi S, Yamauchi K (2005) Serum steroid profiles in artificially maturing female Japanese eel, Anguilla japonica. Aquaculture 243:393–402CrossRefGoogle Scholar
  73. Medina V, Velasco Y, Cruz P (2005) Aspectos generales de la criopreservación espermática en peces teleósteos. Revista Colombiana de Ciencias Pecuarias 18:34–48 (in Spanish)Google Scholar
  74. Miura T, Yamauchi K, Nagahama Y, Takahashi H (1991) Induction of spermatogenesis in male Japanese eel, Anguilla japonica, by a single injection of human chorionic gonadotropin. Zool. Sci. 8:63–73Google Scholar
  75. Müller T, Urbányi B, Váradi B, Binder T, Horn P, Bercsényi M, Horváth A (2004) Cryopreservation of sperm of farmed European eel Anguilla anguilla. J. World Aq. Soc. 35:240–246Google Scholar
  76. Müller T, Baska F, Niklesz C, Horn P, Váradi B, Bercsényi M (2005) The testis histology of artificially matured European eel (Anguilla anguilla L.) at the end of sexual maturation, and spermatozoa ultrastructure in freshwater rearing. Acta Biol. Hung. 56(1–2):169–172PubMedCrossRefGoogle Scholar
  77. Ogier De Baulny B, Le Bern Y, Kerboeuf D, Maisse G (1997) Flow cytometric evaluation of mitochondrial activity and membrane integrity in fresh and cryopreserved rainbow trout (Oncorhynchus mykiss) spermatozoa. Cryobiology 34:141–149CrossRefGoogle Scholar
  78. Ogier De Baulny B, Labbe C, Maisse G (1999) Membrane integrity, mitochondrial activity, ATP content, and motility of the European catfish (Silurus glanis) testicular spermatozoa after freezing with different cryoprotectants. Cryobiology 39:177–184CrossRefGoogle Scholar
  79. Ohta H, Izawa T (1996) Diluent for cool storage of the Japanese eel (Anguilla japonica) spermatozoa. Aquaculture 142:107–118CrossRefGoogle Scholar
  80. Ohta H, Kagawa H, Tanaka H, Okuzawa K, Hirose K (1996a) Changes in fertilization and hatching rates with time after ovulation induced by 17,20 -dihydroxy-4-pregnen-3-one in the Japanese eel, Anguilla japonica. Aquaculture 139: 291–301CrossRefGoogle Scholar
  81. Ohta H, Kagawa H, Tanaka H, Okuzawa K, Hirose K (1996b) Milt production in the Japanese eel Anguilla japonica induced by repeated injections of human chorionic gonadotropin. Fish. Sci. 62:44–49Google Scholar
  82. Ohta H, Kagawa H, Tanaka H, Unuma T (2001) Control by the environmental concentration of ions of the potential for motility in Japanese eel spermatozoa. Aquaculture 198:339–351CrossRefGoogle Scholar
  83. Okamura A, Zhang H, Yamada Y, Tanaka S, Horie N, Mikawa N, Utoh T, Oka HP (2000) Re-examination of the spermatozoal ultrastructure of eels: observations of the external morphology of spermatozoa in three species. J. Fish Biol. 57:161–169Google Scholar
  84. Peñaranda DS, Pérez L, Fakriadis G, Mylonas CC, Asturiano JF (2008). Effects of extenders and cryoprotectant combinants on motility and morphometry of sea bass (Dicentrarchus labrax) spermatoza, J. Appl. Ichthyol. 24:450–455CrossRefGoogle Scholar
  85. Peñaranda DS, Pérez L, Gallego V, Jover M, Asturiano JF. Improvement of European eel sperm cryopreservation method by preventing spermatozoa movement activation caused by cryopro-tectants. Cryobiology, submitted.Google Scholar
  86. Pérez L, Asturiano JF, Tomás A, Zegrari S, Barrera R, Espinós FJ, Navarro JC, Jover M (2000) Induction of maturation in the male European eel (Anguilla anguilla): assessment of sperm quality throughout treatments. J. Fish Biol. 57: 1488–1504CrossRefGoogle Scholar
  87. Pérez L, Asturiano JF, Martínez S, Tomás A, Olivares L, Mocé E, Lavara R, Vicente JS, Jover, M (2003) Ionic composition and physio-chemical parameters of the European eel (Anguilla anguilla) seminal plasma. Fish Physiol. Biochem. 28:221–222CrossRefGoogle Scholar
  88. Piferrer F (2001) Endocrine sex control strategies for the feminization of teleost fish. Aquaculture 97:229–281CrossRefGoogle Scholar
  89. Pursel VG, Johnson LA (1974) Glutaraldehyde fixation of boar spermatozoa for acrosome evaluation. Theriogenology 1(2):63–68PubMedCrossRefGoogle Scholar
  90. Rana K.J., (1995) Methods in Molecular Biology: Cryopreservation and Freeze-drying Protocols: Vo l 38, Cryopreservation of Fish Spermatozoa, Chapter 16.Google Scholar
  91. Rijsselaere T, Soom AV, Hoflack G, Maes D, Kruif A (2004) Automated sperm morphometry and morphology analysis of canine semen by the Hamilton-Thorne analyser. Theriogenology 62:1292–1306PubMedCrossRefGoogle Scholar
  92. Rodina M, Cosson J, Gela D, Linhart O (2004) Kurokura solution as immobilizing médium for spermatozoa of Tench (Tinca tinca L.). Aquacult. Int. 12:119–131CrossRefGoogle Scholar
  93. Rurangwa E, Kime DE, Ollevier F, Nash JP (2004) The measurement of sperm motility and factors affecting sperm quality in cultured fish. Aquaculture 234:1–28CrossRefGoogle Scholar
  94. Sancho M, Perez-Sanchez F, Tablado L, de Monserrat JJ, Soler C (1998) Computer-assisted mor-phometric analysis of ram sperm heads: evaluation of different fixative techniques. Theriogenology 50:27–37PubMedCrossRefGoogle Scholar
  95. Sansone G, Fabbrocini A, Zupa A, Lavadera SL, Rispoli S, Matassino D (2001) Inactivator media of sea bass (Dicentrarchus labrax L.) spermatozoa motility. Aquaculture 202 257–268.CrossRefGoogle Scholar
  96. Schulz RW, Miura T (2002) Spermatogenesis and its endocrine regulation. Fish Physiol. Biochem. 26:43–46CrossRefGoogle Scholar
  97. Schulz RW, Miura T (2002) Spermatogenesis and its endocrine regulation. Fish Physiol. Biochem. 26: 43–46CrossRefGoogle Scholar
  98. Segovia M, Jenkins JA, Paniagua-Chavez C, Tiersch TR (2000) Flow cytometric evaluation of antibiotic effects on viability and mitochondrial of refrigerated spermatozoa of Nile tilapia. Theriogenology 53:1489–1499PubMedCrossRefGoogle Scholar
  99. Soler C, de Monserrat JJ, Gutierrez R, Nunez J, Nunez M, Sancho M, Perez-Sanchez F, Cooper TG (2003) Use of the sperm class analyser for objective assessment of human sperm morphology. Int. J. Androl. 26:262–270PubMedCrossRefGoogle Scholar
  100. Szabó G, Müller T, Bercsényi M, Urbányi B, Kucska B, Horváth A (2005) Cryopreservation of European eel (Anguilla anguilla) sperm using different extenders and cryoprotectants. Acta Biol. Hung. 56:173–175PubMedCrossRefGoogle Scholar
  101. Tanaka H, Kagawa H, Ohta H (2001) Production of leptocephali of Japanese eel (Anguilla japonica) in captivity. Aquaculture 201:51–60CrossRefGoogle Scholar
  102. Tanaka S, Zhang H, Horie N, Yamada Y, Okamura A, Utoh T, Mikawa N, Oka HP, Kurokura H (2002a) Long-term cryopreservation of sperm of Japanese eel. J. Fish Biol. 60:139–146CrossRefGoogle Scholar
  103. Tanaka S, Zhang H, Yamada Y, Okamura A, Horie N, Utoh T, Mikawa N, Oka HP, Kurokura H (2002b) Inhibitory effect of sodium bicarbonate on the motility of sperm of Japanese eel. J. Fish Biol. 60:1134–1141CrossRefGoogle Scholar
  104. Tanaka S, Utoh T, Yamada Y, Horie N, Okamura A, Akazawa A, Mikawa N, Oka HP, Kurokura H (2004) Role of sodium bicarbonate on the initiation of sperm motility in the Japanese eel. Fish. Sci. 70:780–787CrossRefGoogle Scholar
  105. Tan-Fermin JD, Miura T, Adachi S, Yamauchi K (1999) Seminal plasma composition; sperm motility; and milt dilution in the Asian catfish Clarias macrocephalus (Gunther). Aquaculture 171:323–338CrossRefGoogle Scholar
  106. Thomas CA, Garner DL, DeJarnette JM, Marshall CE (1998) Effect of cryopreservation of bovine sperm organelle function and viability as determined by flow cytometry. Biol. Reprod. 58:786–793PubMedCrossRefGoogle Scholar
  107. Van Look KJW, Kime DE (2003) Automated sperm morphology analysis in fishes: the effect of mercury on goldfish sperm. J. Fish Biol. 63:1020–1033CrossRefGoogle Scholar
  108. Verstegen J, Iguer-Ouada M, Onclin K (2002) Computer-assisted semen analysers in andrology research and veterinary practice. Theriogenology 57:149–179PubMedCrossRefGoogle Scholar
  109. Villani P and Catena C (1991) Criopreservazione di gamete maschili di spigola (D. labrax). Riv. Ital. Acquacoltura 217–222Google Scholar
  110. Wang C, Leung A, Tsoi WL, Leung J, Ng V, Lee KF, Chan SY (1991) Computer-assisted assessment of human sperm morphology; comparison with visual assessment. Fertil. Steril. 55:983–988PubMedGoogle Scholar
  111. Watson PF (1995) Recent developments and concepts in the cryopreservation ofspermatozoa and the assessment of their post-thawing function. Reprod. Fertil. Dev. 7:871–891PubMedCrossRefGoogle Scholar
  112. Wong PYD, Lee WM, Tsang AYF (1981) The effects of extracellular sodium on acid release and motility initiation in rat caudal epididymal spermatozoa in vitro. Exp. Cell Res. 131:97–104PubMedCrossRefGoogle Scholar
  113. Woolley DM (1997) Studies on the eel sperm flagellum I. The structure of the inner dynein arm complex. J. Cell Sci. 110:85–94PubMedGoogle Scholar
  114. Woolley DM (1998) Studies of the eel sperm flagellum. 3. Vibratile motility and rotatory bending. Cell Motil. Cytoskeleton 39:246–255PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  • Luz Pérez
    • 1
  • David Peñaranda
    • 1
  • Víctor Gallego
    • 1
  • Juan Asturiano
    • 1
  1. 1.Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología AnimalUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations