Advertisement

Towards Effective Simulation of Effective Elastoplastic Evolution

  • Carsten Carstensen
  • Robert Huth
Conference paper
Part of the IUTAM BookSeries book series (IUTAMBOOK, volume 11)

Abstract

This paper summarises the general strategy for time evolving finite elastoplasticity and outlines encountered computational challenges in form of numerical benchmarks. Each time-step of some natural implicit time-discretisation is eventually recast into a possibly non-convex minimisation problem. Finite plasticity seems to imply the lack of lower semicontinuity of the energy functional and so leads to enforced fine strain oscillations called microstructures with required generalised solution concepts. The adaptive spacial discretisation is possible for convexified formulations from the relaxation finite element method (RFEM). For single-slip finite plasticity, one requires to relax numerically with laminates or semiconvexity notions.

Key words

finite elastoplasticity non-convex minimisation quasiconvexity numerical relaxation FEM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Bartels (2003) Reliable and efficient approximation of polyconvex envelopes. SIAM J. Numer. Anal. 43(1), 363–385.CrossRefMathSciNetGoogle Scholar
  2. 2.
    S. Bartels (2003) Linear convergence in the approximation of rank.one convex envelopes. ESAIM M2AN 38(5), 811–820.CrossRefMathSciNetGoogle Scholar
  3. 3.
    S. Bartels, C. Carstensen, K. Hackl and U. Hoppe (2003) Effective relaxation for microstructure simulations: Algorithms and applications. Comput. Meth. Appl. Mech. Engng. 193, 5143–5175.CrossRefMathSciNetGoogle Scholar
  4. 4.
    C. Carstensen (2007) Convergence of an adaptive FEM for a class of degenerate convex minimization problems. IMA Journal of Numerical Analysis, published online.Google Scholar
  5. 5.
    C. Carstensen, S. Conti and A. Orlando (2008) Mixed analytical-numerical relaxation in finite single-slip crystal plasticity (submitted).Google Scholar
  6. 6.
    S. Govindjee, A. Mielke and G.J. Hall. (2002) The free-energy of mixing for n-variant martensitic phase transformations using quasi-convex analysis. Mech. Physics Solids 50, 1879–1922.MathSciNetGoogle Scholar
  7. 7.
    K. Hackl and U. Hoppe (2003) On the calculation of microstructures for inelastic materials using relaxed energies. in Proceedings of IUTAM Symposium on Computational Mechanics of Solids at Large Strains, C. Miehe (Ed.), pp. 77–86, Kluwer Academic Publishers, Dordrecht.Google Scholar
  8. 8.
    C. Carstensen, K. Hackl and A. Mielke (2002) Non-convex potentials and microstructures in finite-strain plasticity. Proc. Royal Soc. London, Ser. A 458, 299–317.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    C. Carstensen and K. Jochimsen (2003) Adaptive finite element methods for miocrostructures? Numerical experiments for a 2-well benchmark. Computing 71, 175–204.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    C. Carstensen and P. Plechac (2001) Numerical analysis of a relaxed variational model of hysteresis in two-phase solids. M2AN 35, 865–878.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    S. Conti (2006) Relaxation of single-slip single-crystal plasticity with linear hardening. In Multiscale Materials Modeling, Fraunhofer IRB, pp. 30–35.Google Scholar
  12. 12.
    B. Dacorogna (2007) Direct Methods in the Calculus of Variations. Applied Mathematical Sciences Vol. 78, Springer, New York.Google Scholar
  13. 13.
    G. Dolzmann (1999) Numerical computation of rank one convex envelopes. SIAM J. Numer. Anal. 26, 1621–1635.CrossRefMathSciNetGoogle Scholar
  14. 14.
    G. Dolzmann (2003) Variational Methods for Crystalline Microstructure — Analysis and Computation. Lecture Notes in Mathematics, Vol. 1803, Springer, Berlin/Heidelberg.MATHGoogle Scholar
  15. 15.
    M. Kruzik, A. Mielke and T. Roubicek (2005) Modelling of microstructure and its evolution in shape-memory-alloy single-crystals, in particular in CuAlNi. Meccanica 40, 389–418.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    B. Halphen and Q.S. Nguyen (1975) Sur les materiaux standards generalizes. J. Mech. 14, 39–63.MATHGoogle Scholar
  17. 17.
    C. Miehe (2002) Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. Int. J. Numer. Meth. Engrg. 55(11), 1285–1322.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    C. Miehe and M. Lambrecht (2003) A two-scale finite element relaxation analysis of shear bands in non-convex inelastic solids: Small-strain theory for standard dissipative materials. Comput. Methods Appl. Mech. Engrg. 192, 473–508.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    C. Miehe, J. Schotte and M. Lambrecht (2002) Homogenization of inelastic solid materials at finite strains based on incremental minimization principles. J. Mech. Phys. Solids 50, 2123–2167.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    A. Mielke and F. Theil (1999) A mathematical Model for rate-independant phase transformations with hysteresis. In Proceedings Workshop of Continuum Mechanics in Analysis and Engineering, Aachen, pp. 117–129.Google Scholar
  21. 21.
    A. Mielke (2003) Energetic formulation of multiplicative elasto-plasticity using dissipation distances. Cont. Mech. Thermodynamics 15, 351–382.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    M. Ortiz and E.A. Repetto (1999) Non-convex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47, 397–462.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    V. Sverak (1992) Rank-one convexity does not imply quasiconvexity. Proc. Roy. Soc. Edinb. 120A, 185–189.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • Carsten Carstensen
    • 1
  • Robert Huth
    • 1
  1. 1.Humboldt Universität zu BerlinBerlinGermany

Personalised recommendations