Skip to main content

Part of the book series: IUTAM BookSeries ((IUTAMBOOK,volume 11))

Abstract

We consider microstructures which are not inherent to the material but occur as a result of deformation or other physical processes. Examples are martensitic twin-structures or dislocation walls in single crystals and microcrack-fields in solids. An interesting feature of all those microstructures is, that they tend to form similar spatial patterns, which hints at a universal underlying mechanism. For purely elastic materials this mechanism has been identified as minimisation of global energy. For non-quasiconvex potentials the minimisers are not anymore continuous deformation fields, but small-scale fluctuations related to probability distributions of deformation gradients, so-called Young measures. These small scale fluctuations correspond exactly to the observed microstructures of the material. The particular features of those, like orientation or volume fractions, can now be calculated via so-called relaxed potentials. We develop a variational framework which allows to extend these concepts to inelastic materials. Central to this framework will be a Lagrange functional consisting of the sum of elastic power and dissipation due to change of the internal state of the material. We will obtain time-evolution equations for the probability-distributions mentioned above. In order to demonstrate the capabilities of the formalism we will show an application to crystal plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartels S, Carstensen C, Hackl K, Hoppe U (2004) Comp Meth Appl Meth Eng 193:5143–5175.

    Article  MATH  MathSciNet  Google Scholar 

  2. Conti S, Theil F (2005) Arch Rat Mech Anal 178:125–148.

    Article  MATH  MathSciNet  Google Scholar 

  3. Mielke A (2004) Comp Meth Appl Meth Eng 193:5095–5127.

    Article  MATH  MathSciNet  Google Scholar 

  4. Lambrecht M, Miehe C, Dettmar J (2003) Int J Solids Struct 40:1369–1391.

    Article  MATH  Google Scholar 

  5. Ortiz M, Repetto EA (1999) J Mech Phys Solids 47:397–462.

    Article  MATH  MathSciNet  Google Scholar 

  6. Mielke A, Ortiz M (2007) ESAIM Control Optim Calc Var, online since December 21.

    Google Scholar 

  7. Conti S, Ortiz M (2008) J Mech Phys Solids 56:1885–1904.

    Article  MathSciNet  MATH  Google Scholar 

  8. Hackl K, Schmidt-Baldassari M, Zhang W (2003) Mat Sci Eng A 378:503–506.

    Article  Google Scholar 

  9. Hackl K, Heinen R (2008) Continuum Mech Thermodyn 19:499–510.

    Article  MathSciNet  MATH  Google Scholar 

  10. Hackl K (2006) Relaxed potentials and evolution equations. In: Gumbsch P (Ed) Proceedings Third International Conference on Multiscale Materials Modeling. Fraunhofer IRB Verlag.

    Google Scholar 

  11. Carstensen C, Hackl K, Mielke A (2002) Proc R Soc London A 458:299–317.

    MATH  MathSciNet  Google Scholar 

  12. Mielke A (2002) Finite elastoplasticity, Lie groups and geodesics on SL(d). In: Newton P, Weinstein A, Holmes P (Eds), Geometry, Dynamics, and Mechanics. Springer, Berlin.

    Google Scholar 

  13. Hackl K, Fischer FD (2008) Proc Roy Soc London A 464:117–132.

    Article  MATH  MathSciNet  Google Scholar 

  14. Hackl K, Mielke A (2008) manuscript, in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this paper

Cite this paper

Hackl, K., Kochmann, D.M. (2008). Relaxed Potentials and Evolution Equations for Inelastic Microstructures. In: Reddy, B.D. (eds) IUTAM Symposium on Theoretical, Computational and Modelling Aspects of Inelastic Media. IUTAM BookSeries, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9090-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9090-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9089-9

  • Online ISBN: 978-1-4020-9090-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics