Robust Shape Estimation with Deformable Models

  • Jorge S. Marques
  • Jacinto C. Nascimento
  • Arnaldo J. Abrantes
  • Margarida Silveira
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 13)

This paper addresses the estimation of 2D object boundary from noisy data, using deformable contours. First, it discusses the relationship between deformable contours and other Pattern Recognition algorithms (e.g., Kohonen maps, mean shift, fuzzy c-means) and derives a unified framework which allows a joint formulation for a wide set of methods. Afterwords, the paper addresses the estimation of deformable curves in cluttered images, assuming that there is a large number of outlier features detected in the image. The paper presents two robust algorithms: the adaptive snake for static objects and a robust tracker (S-PDAF) for moving objects in video sequences. The advantages of both algorithms with respect to classic methods are illustrated by examples.

Keywords

Covariance Radar Remote Sensing Estima 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Kass and A. Witkin and D. Terzopoulos, Snakes: Active Contour Models, International Journal of Computer Vision, Vol. 1, 321–331, 1988.CrossRefGoogle Scholar
  2. 2.
    L. D. Cohen, I. Cohen, Finite-Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1131–1147, 1993.Google Scholar
  3. 3.
    T. Cootes, T. Hill, C. Taylor and J. Haslam, The Use of Active Shape Models for Locating Structures in Medical Images, Image Vision and Computing, Vol. 12, 355–366, 1994.CrossRefGoogle Scholar
  4. 4.
    T. McInerney, D. Terzopoulos, Deformable Models in Medical Image Analysis: A Survey, Medical Image Analysis, Vol. 1, No. 2, 91–108. June 1996.CrossRefGoogle Scholar
  5. 5.
    R. Malladi, J. A. Sethian, B. C. Vemuri, Shape Modeling with Front Propagation: A Level Set Approach, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 17, No. 2, 158–175, February 1995.CrossRefGoogle Scholar
  6. 6.
    V. Caselles, R. Kimmel, G. Sapiro, Geodesic Active Contours, International Journal of Computer Vision, Vol. 22, 61–79, 1997.MATHCrossRefGoogle Scholar
  7. 7.
    C. Xu, J. L. Prince, Snakes, Shapes, and Gradient Vector Flow, IEEE Transactions on Image Processing, Vol. 7, No. 3, 359–369, March 1998.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    A. Blake, M. Isard, Active Contours, Springer, 1998.Google Scholar
  9. 9.
    A. Nealen, M. Müller, R. Keiser, E. Boxerman, M. Carlson, Physically Based Deformable Models in Computer Graphics, Computer Graphics Forum, Vol. 25, No. 4, 809–836, December 2006.CrossRefGoogle Scholar
  10. 10.
    J. Cheng, S. Foo, Dynamic Directional Gradient Vector Flow for Snakes, IEEE Transactions on Image Processing, Vol. 15, No. 6, 1563–1571, June 2006.CrossRefGoogle Scholar
  11. 11.
    J. Gambini, M. Mejail, J. Jacobo-Berlles, A. Frery, Feature Extraction in Speckled Imagery Using Dynamic B-Spline Deformable Contours Under the G0 Model, International Journal of Remote Sensing, Vol. 27, No. 22, 5037–5059, November 2006.CrossRefGoogle Scholar
  12. 12.
    A. J. Abrantes, J. S. Marques, A Class of Constrained Clustering Algorithms for Object Boundary Extraction, IEEE Transactions on Image Processing, Vol. 5, No. 11, 1507–1521, 1996.CrossRefGoogle Scholar
  13. 13.
    A. J. Abrantes, J. S. Marques, A Constrained Clustering Algorithm for Shape Analysis with Multiple Features, International Conference on Pattern Recognition, 916–919, 2000.Google Scholar
  14. 14.
    J. C. Nascimento, J. S. Marques, An Adaptive Potential for Robust Shape Estimation, Image Vision Computing, Vol. 21, No. 13–14, 1107–1116, 2003.CrossRefGoogle Scholar
  15. 15.
    A. J. Abrantes, J. S. Marques, The Mean Shift Algorithm and the Unified Framework, International Conference on Pattern Recognition, 244–247, 2004.Google Scholar
  16. 16.
    J. C. Nascimento, J. S. Marques, Robust Shape Tracking in the Presence of Cluttered Background, IEEE Transactions on Multimedia, Vol. 6, No. 6, 852–861, 2004.CrossRefGoogle Scholar
  17. 17.
    J. C. Nascimento, J. S. Marques, Adaptive Snakes Using the EM Algorithm, IEEE Transactions on Image Processing, Vol. 14, No. 11, 1678–1686, 2005.CrossRefGoogle Scholar
  18. 18.
    J. C. Nascimento, J. S. Marques, Corrections to Adaptive Snakes Using the EM Algorithm, IEEE Transactions on Image Processing, Vol. 15, No. 3, 788–788, 2006.CrossRefGoogle Scholar
  19. 19.
    M. Silveira, J. S. Marques, Estimation of Multiple Objects at Unknown Locations with Active Contours, Iberian Conference on Pattern Recognition and Image Analysis, LNCS 4477, Vol. 2, 372–379, June 2007.CrossRefGoogle Scholar
  20. 20.
    J. S. Marques, J. M. Lemos, Optimal and Suboptimal Shape Tracking Based on Multiple Switched Dynamic Models, Image Vision Computing, Vol. 19, No. 8, 539–550, 2001.CrossRefGoogle Scholar
  21. 21.
    J. Nascimento, J. S. Marques, Robust Multi-Model Filter for Shape Tracking in the Presence of Outliers, Pattern Recognition, Vol. 35, 2711–2718, December 2002.MATHCrossRefGoogle Scholar
  22. 22.
    G. Celeux, J. S. Marques, J. Nascimento, Learning Switching Dynamic Models for Objects Tracking, Pattern Recognition, Vol. 37, No. 9, 1835–1840, September 2004.CrossRefGoogle Scholar
  23. 23.
    A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum Likelihood from Incomplete Data Via the EM Algorithm, Journal of the Royal Statistical Society, B, Vol. 39, 1–38, 1977.MATHMathSciNetGoogle Scholar
  24. 24.
    S. Kay, Fundamentals of Statistical Processing, Volume I: Estimation Theory, Volume I: Estimation Theory, Prentice Hall, Upper River Saddle, NJ, 1993.Google Scholar
  25. 25.
    Y. Bar-Shalom,T. Fortmann, Tracking and Data Association, Academic, New York, 1988.MATHGoogle Scholar
  26. 26.
    K. Tugnait, Detection and Estimation for Abruptly Changing Systems, Automatica, Vol. 18, 607–615, 1982.MATHCrossRefGoogle Scholar
  27. 27.
    D. Terzopoulos, R. Szeliski, Tracking with Kalman Snakes, in Active Vision, A. Blake and A. Yuille (eds.), MIT Press, Cambridge, MA, Ch. 1, 3–20, 1992.Google Scholar
  28. 28.
    Y. Zhong, A. Jain, M.-P. Dubuisson-Jolly, Object Tracking Using Deformable Templates, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. 5, 544–549, May 2000.CrossRefGoogle Scholar
  29. 29.
    K. Toyama, A. Blake, Probabilistic Tracking with Exemplars in a Metric Space, International Journal of Computer Vision, Vol. 48, No. 1, 9–19, 2002.MATHCrossRefGoogle Scholar
  30. 30.
    D. Comaniciu, X.S. Zhou, S. Krishnan, Robust Real-Time Tracking of Myocardial Border: An Information Fusion Approach, IEEE Transactions Medical Imaging, Vol. 23, No. 7, 849–860, 2004.CrossRefGoogle Scholar
  31. 31.
    S. Dambreville, Y. Rathi, A. Tannenbaum, Tracking Deformable Objects with Unscented Kalman Filtering and Geometric Active Contours, 14–16, June 2006.Google Scholar
  32. 32.
    Y. Rathi, N. Vaswani, Allen Tannenbaum, Anthony Yezzi, Tracking Deforming Objects Using Particle Filtering for Geometric Active Contours, to appear in IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007.Google Scholar
  33. 33.
    F. Moreno-Noguer, A. Sanfeliu, D. Samaras, Integration of Deformable Contours and a Multiple Hypotheses Fisher Color Model for Robust Tracking, Image and Vision Computing, Vol. 25, 285–296, 2007.CrossRefGoogle Scholar

Copyright information

© Springer Science +Business Media B.V. 2009

Authors and Affiliations

  • Jorge S. Marques
    • 1
  • Jacinto C. Nascimento
    • 1
  • Arnaldo J. Abrantes
  • Margarida Silveira
    • 1
  1. 1.ISRInstituto Superior TécnicoLisboa

Personalised recommendations