Skip to main content

Electric Field and Charge Structure in Lightning-Producing Clouds

  • Chapter
Book cover Lightning: Principles, Instruments and Applications

Abstract

This chapter gives an overview of typical charge structures observed with balloons inside mesoscale convective systems, supercells, and New Mexico mountain storms. Typical maximum electric field magnitudes, along with several extreme field values observed near lightning initiations, are presented in comparison to the theoretical values that are thought to be required for lightning initiation at various altitudes within active storms. The chapter emphasizes the physical effects that the electrical structure has on lightning initiation, lightning propagation, and lightning type, including a detailed discussion of the controlling effect that the electric potential has on the altitude of horizontal lightning channels and the existence or absence of preliminary breakdown. Some indications of the countereffects of lightning on electrical structures, particularly through deposition of charge and increased complexity of the charge structure are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bateman, M.G., T.C. Marshall, M. Stolzenburg, W.D. Rust, Precipitation charge and size measurements inside a New Mexico thunderstorm, J. Geophys, Res., 104, 9643–9653, 1999.

    Article  Google Scholar 

  • Bazelyan, E.M., Y.P Raizer, Lightning Physics and Lightning Protection, 325 pp., Inst. of Phys. Publ., Bristol, Berkshire, 2000.

    Google Scholar 

  • Beasley, W.H., M.A. Uman, P.L. Rustan, Electric fields preceding cloud-to-ground lightning flashes, J. Geophys. Res., 87, 4883–902, 1982.

    Article  Google Scholar 

  • Byrne, G.J., A.A. Few, M.F. Stewart, Electric field measurements with a severe thunderstorm anvil, J. Geophys. Res., 94, 6297–6307, 1989.

    Article  Google Scholar 

  • Carey, L.D., M.J. Murphy, T.L. McCormick, N.W.S. Demetriades, Lightning location relative to storm structure in a leading-line, trailing-stratiform mesoscale convective system, J. Geophys. Res., 110, D03105, doi: 10.1029/2003JD004371, 2005.

    Article  Google Scholar 

  • Chauzy, S., M. Chong, A. Dellanoy, S. Despiau, The June 22 tropical squall line observed during COPT 81 experiment, J. Geophys. Res., 90, 6091, 1985.

    Article  Google Scholar 

  • Clarance, N.D., D.J. Malan, Preliminary discharge processes in lightning flashes to ground, Q. J. R. Meteorol. Soc., 83, 161–172, 1957.

    Article  Google Scholar 

  • Coleman, L.M., T.C. Marshall, M. Stolzenburg, et al., Effects of charge and electrostatic potential on lightning propagation, J. Geophys. Res., 108, 4298, doi:10.1029/2002JD002718, 2003.

    Article  Google Scholar 

  • Coleman, L.M., M. Stolzenburg, T.C. Marshall, M. Stanley, Horizontal lightning propagation, preliminary breakdown, and electric potential in New Mexico thunderstorms, J. Geophys. Res., 113, D09208, doi:10.1029/2007JD009459, 2008.

    Article  Google Scholar 

  • Crabb, J.A., J. Latham, Corona from colliding drops as a possible mechanism for the triggering of lightning. Quart. J. Roy. Meteor. Soc., 100, 191, 1974.

    Article  Google Scholar 

  • Defer, E., P. Blanchet, C. Thery, P. Laroche, J. Dye, M. Venticinque, K. Cummins, Lightning activity for the July 10, 1996, storm during the STERAO-A experiment, J. Geophys. Res., 106, 10 151, 2001.

    Article  Google Scholar 

  • Dwyer, J.R., A fundamental limit on electric fields in air, Geophys. Res. Lett., 30, 2055, doi:10.1029/2003GL017781, 2003.

    Article  Google Scholar 

  • Dwyer, J.R., The initiation of lightning by runaway air breakdown, Geophys. Res. Lett., 32, L20808, doi:10.1029/2005GL023975, 2005.

    Article  Google Scholar 

  • Gurevich, A.V., K.P. Zybin, Runaway breakdown and electric discharges in thunderstorms, Phys. Usp., 44, 1119, 2001.

    Article  Google Scholar 

  • Gurevich, A.V., G.M. Milikh, R. Roussel-Dupre’, Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm, Phys. Lett. A, 165, 463, 1992.

    Article  Google Scholar 

  • Houze, R.A., Jr., Cloud Dynamics, 573 pp., Academic, San Diego, 1993.

    Google Scholar 

  • Kasemir, H. W., A contribution to the electrostatic theory of a lightning discharge, J. Geophys. Res., 65, 1873–1878, 1960.

    Article  Google Scholar 

  • Koshak, W.J., E.P. Krider, Analysis of lightning field changes during active Florida thunderstorms, J. Geophys. Res., 94, 1165–1186, 1989.

    Article  Google Scholar 

  • Krehbiel, P.R., The electrical structure of thunderstorms, in The Earth’s Electrical Environment, E.P. Krider, R.G. Roble (eds.), pp. 90–113, Natl. Acad. Press, Wash., 1986.

    Google Scholar 

  • Krehbiel, P.R., J.R. Riousset, V.P. Pasko, R.J. Thomas, W. Rison, M.A. Stanley, H.E. Edens, Upward electrical discharges from thunderstorms, Nature Geoscience, 1, 233–237, 2008

    Article  Google Scholar 

  • Lang, T.J., S.A. Rutledge, K.C. Wiens, Origins of positive cloud-to-ground lightning flashes in the stratiform region of a mesoscale convective system. Geophys. Res. Lett., 31, L10105, doi: 10.1029/2004GL019823, 2004.

    Article  Google Scholar 

  • Latham, J., I.M. Stromberg, Point-discharge. in Lightning, R.H. Golde, ed., Academic Press, 99–117, 1977.

    Google Scholar 

  • Lyons, W.A., The Meteorological and Electrical structures of TLE-producing convective storms, this volume, 2008.

    Google Scholar 

  • MacGorman, D.R., D.W. Burgess, V. Mazur, W.D. Rust, W.L. Taylor, B.C. Johnson, Lightning rates relative to tornadic storm evolution on 22 May 1981, J. Atmos Sci., 46, 221–250, 1989.

    Article  Google Scholar 

  • MacGorman, D.R., W.D. Rust, P.R. Krehbiel, et al., The electrical structure of two supercell storms during STEPS, Mon. Weather Rev., 133, 2583, 2005.

    Article  Google Scholar 

  • Maggio, C.R., Estimations and applications of lightning charge transfers in New Mexico thunderstorms, Ph.D. diss., Univ. of Miss., University, 209 pp., 2007.

    Google Scholar 

  • Maggio, C.R., L.M. Coleman, T.C. Marshall, et al., Lightning initiation locations as a remote sensing tool of large thunderstorm electric field, J. Oceanic Atmos. Technol., 22, 1059, 2005.

    Article  Google Scholar 

  • Marshall, T.C., S.J. Marsh, Negatively charged precipitation in a New Mexico thunderstorm, J. Geophys. Res., 98, 14 909–14 916, 1993.

    Article  Google Scholar 

  • Marshall, T. C., W.D. Rust, Electric field soundings through thunderstorms, J. Geophys. Res., 96, 22297, 1991.

    Article  Google Scholar 

  • Marshall, T.C., W.D. Rust, Two types of vertical electrical structures in stratiform precipitation regions of mesoscale convective systems, Bull. Amer. Meteorol. Soc., 74, 2159, 1993.

    Article  Google Scholar 

  • Marshall, T.C., M. Stolzenburg, Estimates of cloud charge densities in thunderstorms, J. Geophys. Res., 103, 19 769–19 775, 1998.

    Article  Google Scholar 

  • Marshall, T.C., M. Stolzenburg, Voltages inside and just above thunderstorms, J. Geophys. Res., D106, 4757, 2001.

    Article  Google Scholar 

  • Marshall, T.C., W.D. Rust, W.P. Winn, K.E. Gilbert, Electrical structure in two thunderstorm anvil clouds, J. Geophys. Res., 94, 2171, 1989.

    Article  Google Scholar 

  • Marshall, T.C., M.P. McCarthy, W.D. Rust, Electric field magnitudes and lightning initiation in thunderstorms, J. Geophys. Res., 100, 7097, 1995a.

    Article  Google Scholar 

  • Marshall, T.C., W.D. Rust, M. Stolzenburg, Electrical structure and updraft speeds in thunderstorms over the southern Great Plains, J. Geophys. Res., 100, 1001, 1995b.

    Article  Google Scholar 

  • Marshall, T.C., M. Stolzenburg, W.D. Rust, E.R. Williams, R. Boldi, Positive charge in the stratiform cloud of a mesoscale convective system, J. Geophys. Res., 106, 1157–1163, 2001.

    Article  Google Scholar 

  • Marshall T.C., M. Stolzenburg, C.R. Maggio, et al., Observed electric fields associated with lightning initiation, Geophys. Res. Lett., 32, 10.1029/2004GL021802, 2005.

    Google Scholar 

  • Proctor, D.E., VHF radio pictures of cloud flashes, J. Geophys. Res., 86, 4041–4071, 1981.

    Article  Google Scholar 

  • Qie, X., T. Zhang, C. Chen, et al., The lower positive charge center and its effect on lightning discharges on the Tibetan Plateau, Geophys. Res. Lett., 32, L05814, doi:10.1029/2004GL022162, 2005.

    Article  Google Scholar 

  • Reynolds, S.E., and H.W. Neill, The distribution and discharge of thunderstorm charge-centers, J. Meteorol., 12, 1–12, 1955.

    Google Scholar 

  • Rison, W., R.J. Thomas, P.R. Krehbiel, T. Hamlin, J. Harlin, A GPS-based three-dimensional lightning mapping system: Initial observations in central New Mexico, Geophys. Res. Lett., 26, 3573–3576, 1999.

    Article  Google Scholar 

  • Rust, W.D., T.C. Marshall, On abandoning the thunderstorm tripole-charge paradigm, J. Geophys. Res., 101, 23499, 1996.

    Article  Google Scholar 

  • Rust, W.D., D.R. MacGorman, E.C. Bruning, et al., Inverted-polarity electrical structures in thunderstorms in the Severe Thunderstorm Electrification and Precipitation Study, Atmos. Res., 76, 247, 10.1016/j.atmosres.2004.11.029, 2005.

    Article  Google Scholar 

  • Rutledge, S.A., D.R. MacGorman, Cloud-to-ground lightning activity in the 10–11 June 1985 mesoscale convective system observed during OK PRE-STORM, Mon. Weather Rev., 116, 1393–1408, 1988.

    Article  Google Scholar 

  • Saunders, C.P.R., Charge separation mechanisms in clouds, Space Sci. Rev.,in press, 2008.

    Google Scholar 

  • Shao, X.M., P.R. Krehbiel, The spatial and temporal development of intracloud lightning, J. Geophys. Res., 101, 26641, 1996.

    Article  Google Scholar 

  • Simpson, G.C., On the electricity of rain and its origin in thunderstorms, Philos. Trans. R. Soc., London, A209, 379, 1909.

    Article  Google Scholar 

  • Simpson, G., F.J. Scrase, The distribution of electricity in thunderclouds, Proc. R. Soc. London, A161, 309, 1937.

    Google Scholar 

  • Sonnenfeld, R.G., J. Battles, G. Lu, W.P. Winn, Comparing E-field changes aloft to lightning mapping data, J. Geophys.Res.,111, doi:10:1029/2006JD007242, 2006.

    Google Scholar 

  • Stolzenburg, M., T.C. Marshall, Charged precipitation and electric field in two thunderstorms, J. Geophys. Res., 103, 19 777–19 790, 1998.

    Google Scholar 

  • Stolzenburg, M., T.C. Marshall, Charge structure and dynamics in thunderstorms, Space Sci. Rev., 137, 355–372, doi: 10.1007/s11214-009-9338, 2008a.

    Article  Google Scholar 

  • Stolzenburg, M., T.C. Marshall, Serial profiles of electrostatic potential in five New Mexico thunderstorms, J. Geophys. Res., 113, D13207, doi:10.1029/2007JD009495, 2008b.

    Article  Google Scholar 

  • Stolzenburg, M., T.C. Marshall, E.D. Rust, B.F. Smull, Horizontal distribution of electrical and meteorological conditions across the stratiform region of a mesoscale convective system, Mon. Weather Rev., 122, 1777–1797, 1994.

    Article  Google Scholar 

  • Stolzenburg, M., W.D. Rust, B.F. Smull, T.C. Marshall, Electrical structure in thunderstorm convective regions 1. Mesoscale convective systems, J. Geophys. Res., 103, 14059, 1998a.

    Article  Google Scholar 

  • Stolzenburg, M., W.D. Rust, T.C. Marshall, Electrical structure in thunderstorm convective regions 2. Isolated storms, J. Geophys. Res., 103, 14079, 1998b.

    Article  Google Scholar 

  • Stolzenburg, M., W.D. Rust, T.C. Marshall, Electrical structure in thunderstorm convective regions 3. Synthesis, J. Geophys. Res., 103, 14097, 1998c.

    Article  Google Scholar 

  • Stolzenburg M., T.C. Marshall, W.D. Rust, D.L. Bartels, wo simultaneous charge structures in thunderstorm convection, J. Geophys. Res., 107, 4352, 2002.

    Article  Google Scholar 

  • Stolzenburg, M., T.C. Marshall, L.M. Coleman, et al., Evolution of charge and lightning type in developing thunderstorms, Proc. 12th Intl. Conf. on Atmos. Elec, Versailles, France, 2003.

    Google Scholar 

  • Stolzenburg M., T.C. Marshall, W.D. Rust, et al., Electric field values observed near lightning flash initiations, Geophys. Res. Lett., 34, L04804, 10.1029/2006GL028777, 2007a.

    Article  Google Scholar 

  • Stolzenburg, M., T.C. Marshall, W.D. Rust, et al., The stratiform precipitation region of mesoscale convective systems, Proc. 13th Intl. Conf. on Atmos. Elec, Beijing, China, 2007b.

    Google Scholar 

  • Symbalisty, E.M.D., R. Roussel-Dupre, V. Yukhimuk, Finite volume solutions of the relativistic Boltzmann equation for electron avalanche studies, IEEE Trans. Plasma Sci., 26, 1575, 1998.

    Article  Google Scholar 

  • Takahashi, T., Proc. 13th Intl. Conf. on Atmos. Elec, Beijing, China, 2007.

    Google Scholar 

  • Takahashi, T., T.D. Keenan, J. Geophys. Res., 109, D16208, 10.1029/2004JD004667, 2004.

    Article  Google Scholar 

  • Tan, Y., S. Tao, B. Zhu, Fine-resolution simulation of the channel strictures and propagation features of intracloud lightning, Geophys. Res. Lett., 33, L09809, doi:10.1029/2005GL025523, 2006.

    Article  Google Scholar 

  • Tessendorf, S., Characteristics of Lightning in Supercells, (this volume), 2008.

    Google Scholar 

  • Weinheimer, A.J., J.E. Dye, D.W. Breed, et al., Simultaneous measurements of the charge, size, and shape of hydrometeors in an electrified cloud, J. Geophys. Res., 96, 20809, 1991.

    Article  Google Scholar 

  • Weiss, S.A., W.D. Rust, D.R. MacGorman, E.C. Bruning, P.R. Krehbiel, Evolving electrical structure of the STEPS 25 June 2000 multicell storm, Mon. Weather Rev., 2008.

    Google Scholar 

  • Wilson, C.T.R., On some determinations of the sign and magnitude of electric discharges in lightning flashes, Proc. R. Soc. London, A92, 555, 1916.

    Google Scholar 

  • Winn, W.P., G.W. Schwede, C.B. Moore, Measurements of electric fields in thunderclouds, J. Geophys. Res., 79, 1761, 1974.

    Article  Google Scholar 

  • Ziegler, C.L., D.R. MacGorman, J.E. Dye, and P.S. Ray, A model evaluation of non-inductive graupel-ice chargin in the early electrification of a mountain thunderstorm, J. Geophys. Res., 96, 12 833–12 855, 1991.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Stolzenburg, M., Marshall, T.C. (2009). Electric Field and Charge Structure in Lightning-Producing Clouds. In: Betz, H.D., Schumann, U., Laroche, P. (eds) Lightning: Principles, Instruments and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9079-0_3

Download citation

Publish with us

Policies and ethics