Lightning and NOX Production in Global Models

  • Kenneth Pickering
  • Heidi Huntrieser
  • Ulrich Schumann


In the upper troposphere lightning is the major contributor to the production of nitric oxide, which is a critical precursor gas for ozone production. It is therefore important that this source is simulated with a high accuracy in global chemical transport models and global chemistry/climate models. This chapter reviews development of the parameterization of lightning-produced nitric oxide in such models and the various components required such as flash rate distribution, NO production per flash and its vertical distribution. The results from simulations with different global models, the uncertainties and the impact on ozone are discussed.


Lightning Nitrogen oxides Aircraft observations Chemical transport modelling Cloud-resolved modelling Tropospheric ozone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, D., Pickering, K., Stenchikov, G., Thompson, A., Kondo, Y.: A three-dimensional total odd nitrogen (NOy) simulation during SONEX using a stretched-grid chemical transport model. J. Geophys. Res. 105, 3851–3876 (2000). doi:10.1029/1999JD901029CrossRefGoogle Scholar
  2. Allen, D.J., Pickering, K.E.: Evaluation of lightning flash rate parameterizations for use in a global chemical transport model. J. Geophys. Res. 107, 4711 (2002). doi:10.1029/2002JD002066CrossRefGoogle Scholar
  3. Allen, D.J., Pickering, K.E., Rodriguez, J.M, Duncan, B., Strahan, S., Logan, J., Damon, M.: Impact of lightning NO production on upper tropospheric NO_X and O3 in the GMI model. J. Geophys. Res. in preparation (2008)Google Scholar
  4. Barth, M.C., Kim, S.-W., Wang, C., et al.: Cloud-scale model intercomparison of chemical constituent transport in deep convection. Atmos. Chem. Phys. 7, 4709–4731 (2007)Google Scholar
  5. Barthe, C., Molinié, G., Pinty, J.-P.: Description and first results of an explicit electrical scheme in a 3D cloud resolving model. Atmos. Res. 76, 95–113 (2005)CrossRefGoogle Scholar
  6. Barthe, C., Barth, M.C.: Evaluation of a new lightning-produced NO_X parameterization for cloud resolving models and its associated uncertainties. Atmos. Chem. Phys. Discuss. 8, 6603–6651 (2008)Google Scholar
  7. Beirle, S., Spichtinger, N., Stohl, A., et al.: Estimating the NO_X produced by lightning from GOME and NLDN data: a case study in the Gulf of Mexico. Atmos. Chem. Phys. 6, 1075–1089 (2006)Google Scholar
  8. Berntsen, T.K., Isaksen, I.S.A.: Effects of lightning and convection on changes in tropospheric ozone due to NO_X emissions from aircraft. Tellus 51B, 766–788 (1999)Google Scholar
  9. Boccippio, D.J., Cummins, K.L., Christian, H.J., Goodman, S.J.: Combined satellite- and surface-based estimation of the intracloud-cloud-to-ground lightning ratio over the continental United States. Mon. Wea. Rev. 129, 108–122 (2001)CrossRefGoogle Scholar
  10. Boccippio, D.J.: Lightning scaling relations revisited. J. Atmos. Sci. 59, 1086–1104 (2002)CrossRefGoogle Scholar
  11. Boersma, K.F., Eskes, H.J., Meijer, E.W., Kelder, H.M.: Estimates of lightning NO_X production from GOME satellite observations. Atmos. Chem. Phys. 5, 2311–2331 (2005)Google Scholar
  12. Bond, D.W., Steiger, S., Zhang, R., Tie, X., Orville, R.E.: The importance of NO_X production by lightning in the tropics. Atmos. Environ. 36, 1509–1519 (2002)CrossRefGoogle Scholar
  13. Borucki, W.J., Chameides, W.L.: Lightning: estimates of the rates of energy dissipation and nitrogen fixation. Rev. Geophys. Space Phys. 22, 363–372 (1984)CrossRefGoogle Scholar
  14. Cecil, D.J., Goodman, S.J., Boccippio, D.J., Zipser, E.J., Nesbitt, S.W.: Three years of TRMM precipitation features, Part I: radar, radiometric, and lightning characteristics. Mon. Wea. Rev. 133, 543–566 (2005)CrossRefGoogle Scholar
  15. Choi, Y., Wang, Y., Zeng, T., Martin, R.V., Kurosu, T.P., Chance, K.: Evidence of lightning NO_X and convective transport of pollutants in satellite observations over North America. Geophys. Res. Lett. 32, L02805 (2005). doi:10.1029/2004GL021436CrossRefGoogle Scholar
  16. Christian, H.J., Blakeslee, R.J., Boccippio, D.J., et al.: Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res. 108, 4005 (2003). doi:10.1029/2002JD002347CrossRefGoogle Scholar
  17. DeCaria, A.J., Pickering, K.E., Stenchikov, G.L., Ott, L.E.: Lightning-generated NOX and its impacton tropospheric ozone production: a three-dimensional modeling study of a Stratosphere-Troposphere Experiment: Radiation, Aerosols and Ozone (STERAO-A) thunderstorm. J. Geophys. Res. 110, 1–13 (2005). doi:10.1029/2004JD005556CrossRefGoogle Scholar
  18. Deierling, W., Latham, J., Petersen, W.A., Ellis, S.M., Christian Jr., H.J.: On the relationship of thunderstorm ice hydrometeor characteristics and total lightning measurements. Atmos. Res. 76, 114–126 (2005)CrossRefGoogle Scholar
  19. Deierling, W., Petersen, W., Latham, J., Ellis, S., Christian Jr., H.J.: The relationship between lightning activity and ice fluxes in thunderstorms. J. Geophys. Res. 113, D15210 (2008), doi: 10.1029/2007JD009700CrossRefGoogle Scholar
  20. Deierling, W., Petersen, W.: Total lightning activity as an indicator of updraft characteristics. J. Geophys. 113, D16210 (2008), doi: 10.1029/2007JD009598CrossRefGoogle Scholar
  21. Dye, J.E., Ridley, B.A., Skamarock, W., et al.: An overview of the Stratospheric-Tropospheric Experiment: Radiation, Aerosols, and Ozone (STERAO)-Deep Convection experiment with results for the July 10, 1996 storm. J. Geophys. Res. 105, 10023–10045 (2000)CrossRefGoogle Scholar
  22. Fehr, T., Höller, H., Huntrieser, H.: Model study on production and transport of lightning-produced NO_X in a EULINOX supercell storm. J. Geophys. Res. 109, 1–17 (2004). doi:10.1029/2003JD003935CrossRefGoogle Scholar
  23. Futyan, J.M., Del Genio, A.D.: Relationships between lightning and properties of convective cloud clusters. Geophys. Res. Lett. 34, L15705 (2007). doi:10.1029/2007GL030227CrossRefGoogle Scholar
  24. Gauthier, M.L., Petersen, W.A., Carey, L.D., Christian Jr., H.J.: Relationship between cloud-to-ground lightning and precipitation ice mass: a radar study over Houston. Geophys. Res. Lett. 33, L20803 (2006). doi:10.1029/2006GL027244CrossRefGoogle Scholar
  25. Grewe, V., Brunner, D., Dameris, M., Grenfell, J.L., Hein, R., Shindell, D., Staehelin, J.: Origin and variability of upper tropospheric nitrogen oxides and ozone at northern mid-latitudes. Atmos. Environ. 35, 3421–3433 (2001)CrossRefGoogle Scholar
  26. Grewe, V.: Impact of climate variability on tropospheric ozone. Sci. Total Environ. 374, 167–181 (2007). doi:10.1016/j.scitotenv.2007.01.032CrossRefGoogle Scholar
  27. Hauglustaine, D., Emmons, L., Newchurch, M., Brasseur, G., Takao, T., Matsubara, K., Johnson, J., Ridley, B., Stith, J., Dye, J.: On the role of lightning NO_X in the formation of tropospheric ozone plumes: a global model perspective. J. Atmos. Chem. 38, 277–294 (2001)CrossRefGoogle Scholar
  28. Höller, H., Finke, U., Huntrieser, H., Hagen, M., Feigl, C.: Lightning-produced NO_X (LINOX): experimental design and case study results. J. Geophys. Res. 104, 13911–13922 (1999). doi:10.1029/1999JD900019CrossRefGoogle Scholar
  29. Höller, H., Fehr, T., Thery, C., Seltmann, J., Huntrieser, H.: Radar, lightning, airborne observations and modelling of a supercell storm during EULINOX. Phys. Chem. Earth B, 25, 1281–1284 (2000)Google Scholar
  30. Huntrieser, H., Schlager, H., Feigl, C., Höller, H.: Transport and production of NO_X in electrified thunderstorms: survey of previous studies and new observations at midlatitudes. J. Geophys. Res. 103, 28247–28264 (1998). doi:10.1029/98JD02353CrossRefGoogle Scholar
  31. Huntrieser, H., Feigl, C., Schlager, H., et al.: Airborne measurements of NO_X, tracer species, and small particles during the European lightning nitrogen oxides experiment. J. Geophys. Res. 107, 4113 (2002). doi:10.1029/2000JD000209CrossRefGoogle Scholar
  32. Huntrieser, H., Schumann, U., Schlager, H., Höller, H., Giez, A., Betz, H.-D., Brunner, D., Forster, C., Pinto Jr., O., Calheiros, R.: Lightning activity in Brazilian thunderstorms during TROCCINOX: implications for NO_X production. Atmos. Chem. Phys. 8, 921–953 (2008)Google Scholar
  33. Intergovernmental Panel on Climate Change: Climate Change 2007 – The Physical Science Basis, Contribution of Working group 1 to the Fourth Assessment Report, 996 pp. Cambridge University Press, Cambridge (2007)Google Scholar
  34. Kurz, C., Grewe, V.: Lightning and thunderstorms, Part I: Observational data and model results. Meteorol. Z. 11, 379–393 (2002)CrossRefGoogle Scholar
  35. Labrador, L.J., von Kuhlmann, R., Lawrence, M.G.: The effects of lightning-produced NO_X and its vertical distribution on atmospheric chemistry: sensitivity simulations with MATCH-MPIC. Atmos. Chem. Phys. 5, 1815–1834 (2005)Google Scholar
  36. Lamarque, J.F., Brasseur, G.P., Hess, P.G., Mueller, J.F.: Three-dimensional study of the relative contributions of the different nitrogen sources in the troposphere. J. Geophys. Res. 101, 22955–22968 (1996)CrossRefGoogle Scholar
  37. Lawrence, M.G., Chameides, W.L., Kasibhatla, P.S., Levy II, H., Moxim, W.: Lightning and atmospheric chemistry: The rate of atmospheric NO production, in: Volland, H. (ed.) Handbook of Atmospheric Electrodynamics, pp. 189–202. CRC Press, Boca Raton, Florida (1995)Google Scholar
  38. Levy II, H., Moxim, W.J., Klonecki, A.A., Kasibhatla, P.S.: Simulated tropospheric NO_X: its evaluation, global distribution and individual source contributions. J. Geophys. Res. 104, 26279–26306 (1999)CrossRefGoogle Scholar
  39. Lopez, J.P., Fridlind, A.M., Jost, H.-J., et al.: CO signatures in subtropical convective clouds and anvils during CRYSTAL-FACE: an analysis of convective transport and entrainment using observations and a cloud-resolving model. J. Geophys. Res. 111, D09305 (2006). doi:10.1029/2005JD006104CrossRefGoogle Scholar
  40. MacGorman, D.R., Rust, W.D.: The Electrical Nature of Storms. 422 pp. Oxford University Press, Oxford (1998)Google Scholar
  41. Mari, C., Mari, C., Chaboureau, J.P., Pinty, J.P., et al.: Regional lightning NO_X sources during the TROCCINOX experiment. Atmos. Chem. Phys. 6, 5559–5572 (2006)Google Scholar
  42. Martin, R.V., Sauvage, B., Folkins, I., Sioris, C.E., Boone, C., Bernath, P., Ziemke, J.: Space-based constraints on the production of nitric oxide by lightning. J. Geophys. Res. 112, D09309 (2007). doi:10.1029/2006JD007831CrossRefGoogle Scholar
  43. Meijer, E.W., van Velthoven, P.F.J., Brunner, D.W., Huntrieser, H., Kelder, H.: Improvement and evaluation of the parameterisation of nitrogen oxide production by lightning. Phys. Chem. Earth. 26, 577–583 (2001)Google Scholar
  44. Orville, R.E., Huffines, G.R., Burrows, W.R., Holle, R.L., Cummins, K.L.: The North American lightning detection network (NALDN) – First results: 1998–2000. Mon. Wea. Rev. 130, 2098–2109 (2002)CrossRefGoogle Scholar
  45. Ott, L.E., Pickering, K.E., Stenchhikov, G.L., Huntrieser, H., Schumann, U.: Effects of lightning NO_X production during the 21 July European lightning nitrogen oxides project storm studied with a three-dimensional cloud-scale chemical transport model. J. Geophys. Res. 112, D05307 (2007). doi:10.1029/2006JD007365CrossRefGoogle Scholar
  46. Ott, L., Pickering, K.E., DeCaria, A., Stenchikov, G., Lin, R.-F., Wang, D., Lang, S., Tao, W.-K.: Production of lightning NO_X and its vertical distribution calculated from 3-D cloud-scale chemical transport model simulations. J. Geophys. Res. in preparation (2008)Google Scholar
  47. Penner, J.E., Atherton, C.S., Dignon, J., Ghan, S.J., Walton, J.J., Hameed, S.: Tropospheric nitrogen: a three-dimensional study of sources, distributions, and deposition. J. Geophys. Res. 96, 959–990 (1991). doi:10.1029/90JD02228CrossRefGoogle Scholar
  48. Petersen, W.A., Rutledge, S.A.: On the relationship between cloud-to-ground lightning and convective rainfall. J. Geophys. Res. 103, 14025–14040 (1998). doi:10.1029/97JD02064CrossRefGoogle Scholar
  49. Petersen, W.A., Christian, H.J., Rutledge, S.A.: TRMM observations of the global relationship between ice water content and lightning. Geophys. Res. Lett. 32, 1–4 (2005). doi:10.1029/2005GL023236CrossRefGoogle Scholar
  50. Pickering, K.E., Wang, Y., Tao, W.K., Price, C., Müller, J.F.: Vertical distributions of lightning NO_X for use in regional and global chemical transport models. J. Geophys. Res. 103, 31203–31216 (1998). doi:10.1029/98JD02651CrossRefGoogle Scholar
  51. Price, C., Rind, D.: A simple lightning parameterization for calculating global lightning distributions. J. Geophys. Res. 97, 9919–9933 (1992). doi:10.1029/92JD00719CrossRefGoogle Scholar
  52. Price, C., Rind, D.: What determines the cloud-to-ground lightning fraction in thunderstorms?. Geophys. Res. Lett. 20, 463–466 (1993). doi:10.1029/93GL00226CrossRefGoogle Scholar
  53. Price, C., Penner, J., Prather, M.: NO_X from lightning, 1. Global distribution based on lightning physics. J. Geophys. Res. 102, 5929–5941 (1997). doi:10.1029/96JD03504CrossRefGoogle Scholar
  54. Ridley, B.A., Dye, J.E., Walega, J.G., Zheng, J., Grahek, F.E., Rison, W.: On the production of active nitrogen by thunderstorms over New Mexico. J. Geophys. Res. 101, 20985–21005 (1996)CrossRefGoogle Scholar
  55. Ridley, B., Ott, L., Pickering, K., et al.: Florida thunderstorms: a faucet of reactive nitrogen to the upper troposphere. J. Geophys. Res. 109, 1–19 (2004). doi:10.1029/2004JD004769CrossRefGoogle Scholar
  56. Ridley, B.A., Pickering, K.E., Dye, J.E.: Comments on the parameterization of lightning-produced NO in global chemistry-transport models, Atmos. Environ., 39, 6184–6187 (2005)Google Scholar
  57. Sauvage, B., Martin, R.V., van Donkelaar, A., Liu, X., Chance, K., Jaeglé, L., Palmer, P.I., Wu, S., Fu, T.-M.: Remote sensed and in situ constraints on processes affecting tropical tropospheric ozone. Atmos. Chem. Phys. 7, 815–838 (2007)Google Scholar
  58. Schumann, U., Huntrieser, H.: The global lightning-induced nitrogen oxides source. Atmos. Chem. Phys. 7, 3823–3907 (2007)Google Scholar
  59. Sherwood, S.C., Phillips, V.T.J., Wettlaufer, J.S.: Small ice crystals and the climatology of lightning. Geophys. Res. Lett. 33, L05804 (2006). doi:10.1029/2005GL025242CrossRefGoogle Scholar
  60. Skamarock, W.C., Dye, J.E., Defer, E., Barth, M.C., Stith, J.L., Ridley, B.A., Baumann, K.: Observational and modeling-based budget of lightning-produced NO_X in a continental thunderstorm. J. Geophys. Res. 108, 4305 (2003). doi:10.1029/2002JD002163CrossRefGoogle Scholar
  61. Staudt, A.C., Jacob, D.J., Logan, J.A., Bachiochi, D., Krishnamurti, T.N., Poisson, N.: Global chemical model analysis of biomass burning and lightning influences over the South Pacific in austral spring. J. Geophys. Res. 107, 4200 (2002). doi:10.1029/2000JD000296CrossRefGoogle Scholar
  62. Staudt, A.C., Jacob, D.J., Ravetta, F., Logan, J.A., Bachiochi, D., Krishnamurti, T.N., Sandholm, S., Ridley, B., Singh, H.B., Talbot, B.: Sources and chemistry of nitrogen oxides over the tropical Pacific. J. Geophys. Res. 108, 8239 (2003). doi:10.1029/2002JD002139CrossRefGoogle Scholar
  63. Stith, J., Dye, J., Ridley, B., Laroche, P., Defer, E., Baumann, K., Huebler, G., Zerr, R., Venticinque, M.: NO signatures from lightning flashes. J. Geophys. Res. 104, 16081–16089 (1999)CrossRefGoogle Scholar
  64. Tie, X., Zhang, R., Brasseur, G., Emmons, L., Lei, W.: Effects of lightning on reactive nitrogen and nitrogen reservoir species in the troposphere. J. Geophys. Res. 106, 3167–3178 (2001). doi:10.1029/2000JD900565CrossRefGoogle Scholar
  65. Tiedtke, M.: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev. 117, 1779–1800 (1989)CrossRefGoogle Scholar
  66. Tost, H., Jöckel, P., Lelieveld, J.: Lightning and convection parameterisations – uncertainties in global modeling. Atmos. Chem. Phys. 7, 4553–4568 (2007)CrossRefGoogle Scholar
  67. Ushio, T., Heckman, S.J., Boccippio, D.J., Christian, H.J., Kawasaki, Z.-I.: A survey of thunderstorm flash rates compared to cloud top height using TRMM satellite data. J. Geophys. Res. 106, 24089–24095 (2001)CrossRefGoogle Scholar
  68. Vonnegut, B.: Some facts and speculations concerning the origin and role of thunderstorm electricity, in: Atlas, D., Booker, D.R., Byers, H., et al. (eds.) Severe Local Storms, Meteorol. Monogr., vol. 5, no. 27., pp. 224–241. Am. Meteor. Soc., Boston (1963)Google Scholar
  69. Wang, Y., DeSilva, A.W., Goldenbaum, G.C., Dickerson, R.R.: Nitric oxide production by simulated lightning: Dependence on current, energy, and pressure. J. Geophys. Res. 103, 19149–19159 (1998)CrossRefGoogle Scholar
  70. Williams, E.: Large-scale charge separation in thunderclouds. J. Geophys. Res. 90, 6013–6025 (1985)CrossRefGoogle Scholar
  71. Zel’dovich, Y.B., Raizer, Y.P.: Physics of Shock Waves and High Temperature Hydrodynamic Phenomena. 566–571 pp. Academic, San Diego, CA (1967)Google Scholar
  72. Zhang, X., Helsdon Jr., J.H., Farley, R.D.: Numerical modelling of lightning-produced NO_X using an explicit lightning scheme: 2. Three-dimensional simulation and expanded chemistry. J. Geophys. Res. 108, 4580 (2003). doi:10.1029/2002JD003225CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Kenneth Pickering
    • 1
  • Heidi Huntrieser
  • Ulrich Schumann
  1. 1.NASA Goddard Space Flight CenterLaboratory for AtmospheresGreenbeltUSA

Personalised recommendations