Skip to main content

Abstract

The study shows that climate change does not necessarily lead to an increase in lightning as proposed by studies linking lightning to convective cloud top heights, but may reduce lightning. The impact of lightning on air chemistry and on climate is studied using simulation results obtained with a coupled ensemble climate-chemistry model from 1960 to 2020. The model simulates lightning and lightning induced nitrogen oxides (NOx) using a parameterisation based on the convective mass flux (updraft velocity). The computed flash frequency distribution over the globe is broadly in agreement with satellite observations, except for some oceanic regions. The results show, different from general expectations, a decrease in lightning activity in a warming climate. The decrease occurs because of less frequent though stronger convective events. Hence lightning decreases in total flash frequency, although individual events produce more lightning. The computed decrease in lightning NOx emissions is overlaid with an increase in sensitivity of ozone production to NOx amounts, which first leads to an increase in lightning ozone until the 1970s and then to a decrease. The sensitivity of climate in terms of radiative forcing to ozone changes is generally decreasing during the simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, D., Pickering, K., Stenchikov, G., Thompson, A., and Kondo, Y.: A three-dimensional total odd nitrogen (NOy) simulation during SONEX using a stretched-grid chemical transport model, J. Geophys. Res., 105, 3851–3876, doi:10.1029/1999JD901029, 2000.

    Article  Google Scholar 

  • Allen, D. J. and Pickering, K. E.: Evaluation of lightning flash rate parameterizations for use in a global chemical transport model, J. Geophys. Res., 107, 4711, doi:10.1029/2002JD002066, 2002.

    Article  Google Scholar 

  • Berntsen, T. K., Fuglestvedt, J. S., Joshi, M. M., Shine, K. P., Stuber, N., Ponater, M., Sausen, R., Hauglustaine, D. A., Li, L.: Response of climate to regional emissions of ozone precursors: sensitivities and warming potentials, Tellus B, 57, 283–304, doi:10.1111/j.1600-0889.2005.00152.x, 2005.

    Article  Google Scholar 

  • Brinkop, S.: Aspects of convective activity and extreme events in a transient climate change simulation, Meteorol. Z., 11, 323–333, 2002.

    Article  Google Scholar 

  • Choi, Y., Wang, Y., Zeng, T., Martin, R. V., Kurosu, T. P., and Chance, K.: Evidence of lightning NOx and convective transport of pollutants in satellite observations over North America, Geophys. Res. Lett., 32, L02805, doi:10.1029/2004GL021436, 2005.

    Google Scholar 

  • Christian H. J., et al.: Global frequency and distribution of lightning as observed from space by the Optical Transient Detector, J. Geophys. Res., 108(D1), 4005, doi:10.1029/2002JD002347, 2003.

    Article  Google Scholar 

  • Dameris, M., Grewe, V., Ponater, M., et al.: Long-term changes and variability in a transient simulation with a chemistry-climate model employing realistic forcing, Atmos. Chem. Phys., 5, 2121–2145, 2005.

    Google Scholar 

  • Dameris, M., Matthes, S., Deckert, R., Grewe, V., and Ponater, M.: Solar cycle effect delays onset of ozone recovery, Geophys. Res. Lett. 33, L03806, doi:10.1029/2005GL024741, 2006.

    Article  Google Scholar 

  • Del Genio, A. D., Yao, M.-S., Jonas, J.: Will moist convection be stronger in a warmer climate?, Geophys. Res. Lett., 34, L16703, doi:10.1029/2007GL030525, 2007.

    Google Scholar 

  • Dye, J. E., et al. An overview of the Stratospheric-Tropospheric Experiment: Radiation, Aerosols, and Ozone (STERAO)-Deep Convection experiment with results for the July 10, 1996 storm, J. Geophys. Res., 105(D8), 10023–10045, 2000.

    Article  Google Scholar 

  • Fehr, T., Höller, H., and Huntrieser, H.: Model study on production and transport of lightning-produced NOx in a EULINOX supercell storm, J. Geophys. Res., 109, D09102, doi:10.1029/2003JD003935, 2004.

    Article  Google Scholar 

  • Flatøy, F. and Hov, Ø.: NOx from lightning and the calculated chemical composition of the free troposphere, J. Geophys. Res., 102, 21373–21381, 1997.

    Article  Google Scholar 

  • Grewe, V., Brunner, D., Dameris, M., Grenfell, J. L., Hein, R., Shindell, D., and Staehelin, J.: Origin and variability of upper tropospheric nitrogen oxides and ozone at northern mid-latitudes, Atmos. Environ., 35, 3421–3433, 2001.

    Article  Google Scholar 

  • Grewe, V.: The origin of ozone, Atmos. Chem. Phys., 6, 1495–1511, 2006.

    Google Scholar 

  • Grewe, V.: Impact of climate variability on tropospheric ozone, Sci. Total Environ., 374, 167–181, doi:10.1016/j.scitotenv.2007.01.032, 2007.

    Article  Google Scholar 

  • Grewe, V. and Stenke, A.: AirClim: an efficient tool for climate evaluation of aircraft technology, Atoms. Chem. Phys., 8, 4621–4639, 2008.

    Google Scholar 

  • Hamid, E., Kawasaki, Z.-I., and Mardiana, R.: Impact of the 1997–98 El Niño event on lightning activity over Indonesia, Geophys. Res. Lett., 28, 147–150, 2001.

    Google Scholar 

  • Hansen, J., Sato, M., Ruedy, R., et al.: Efficacy of climate forcings, J. Geophys. Res., 110, D18104, doi:10.1029/2005JD005776, 2005.

    Article  Google Scholar 

  • Harrison, R. G.: The global atmospheric electrical circuit and climate, Surv. Geophys., 25, 441–484, 2004.

    Google Scholar 

  • Hein, R., Dameris, M., Schnadt, C., et al.: Results of an interactively coupled atmospheric chemistry-general circulation model: comparison with observations, Ann. Geophys., 19, 435–457, 2001.

    Google Scholar 

  • Hopkins, A. E.: Lightning NOx and tropospheric ozone formation in the NASA GISS global carbon model, GSSP (Graduate Student Summer Program of the NASA Goddard Space Flight Center’s Earth-Sun Exploration Division, in collaboration with the Goddard Earth Sciences and Technology Center of the University of Maryland Baltimore County), http://gest.umbc.edu/ student opp/2003 gssp reports.html, 2003.

    Google Scholar 

  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.

    Google Scholar 

  • Isaksen, I. S. A. and Hov, Ø.: Calculation of trends in the tropospheric concentration of O3, OH, CO, CH4, and NOx, Tellus, 39B, 271–285, 1987.

    Article  Google Scholar 

  • Lacis, A. A., Wuebbles, D. J., and Logan, J. A.: Radiative forcing of climate by changes in the vertical distribution of ozone, J. Geophys. Res., 95, 9971–9981, 1990.

    Article  Google Scholar 

  • Markson, R. and Price, C.: Ionospheric potential as a proxy index for global temperature, Atmos. Res., 51, 309–314, 1999.

    Google Scholar 

  • Meehl, G. A. and Stocker, T. F.: Global Climate Projections, in IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.

    Google Scholar 

  • Meijer, E. W., van Velthoven, P. F. J., Brunner, D. W., Huntrieser, H., and Kelder, H.: Improvement and evaluation of the parameterisation of nitrogen oxide production by lightning, Phys. Chem. Earth, 26, 577–583, 2001.

    Google Scholar 

  • Pickering, K. E., Wang, Y., Tao, W. K., Price, C., and Müller, J. F.: Vertical distributions of lightning NOx for use in regional and global chemical transport models, J. Geophys. Res., 103, 31203–31216, doi:10.1029/98JD02651, 1998.

    Article  Google Scholar 

  • Price, C. and Rind, D.: A simple lightning parameterization for calculating global lightning distributions, J. Geophys. Res., 97, 9919–9933, doi:10.1029/92JD00719, 1992.

    Article  Google Scholar 

  • Price, C.: Global surface temperatures and the atmospheric electrical circuit, Geophys. Res. Lett., 20, 1363–1366, 1993.

    Article  Google Scholar 

  • Price, C. and Rind, D.: What determines the cloud-to-ground lightning fraction in thunderstorms?, Geophys. Res. Lett., 20, 463–466, doi:10.1029/93GL00226, 1993.

    Article  Google Scholar 

  • Price, C., and Asfur, M., Inferred long term trends in lightning activity over Africa, Earth Planets Space 58, 1197–1201, 2006.

    Google Scholar 

  • Schumann, U. and Huntrieser, H.: The global lightning-induced nitrogen oxides source, Atmos. Chem. Phys., 7, 3823–3907, 2007.

    Google Scholar 

  • Shine, K., Berntsen, T., Fuglestvedt, J., and Sausen, R.: Scientific issues in the design of metrics for inclusion of oxides of nitrogen in global climate agreements, PNAS, 44, 15768–15773, 2005.

    Article  Google Scholar 

  • Takahashi, T.: Thunderstorm electrification – A numerical study, J. Atmos. Sci., 41, 2541–2557, 1984.

    Article  Google Scholar 

  • Tost, H., Jöckel, P., and Lelieveld, J.: Lightning and convection parameterisations – uncertainties in global modelling, Atmos. Chem. Phys., 7, 4553–4568, 2007.

    Article  Google Scholar 

  • Toumi, R., Haigh, J. D., and Law, K. S.: A tropospheric ozone-lightning climate feedback, Geophys. Res. Lett., 23, 1037–1040, doi:10.1029/96GL00944, 1996.

    Article  Google Scholar 

  • Trenberth, K. E. and Jones, D. E.: Observations: Surface and Atmospheric Climate Change, in: IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.

    Google Scholar 

  • Williams, E. R.: The Schumann resonance: A global tropical thermometer, Science, 256, 1184–1187, 1992.

    Article  Google Scholar 

  • Williams, E. R.: Global circuit response to seasonal variations in global surface air temperature, Mon. Wea. Rev., 122, 1917–1929, 1994.

    Article  Google Scholar 

  • Wu, S., Mickley, L. J., Jacob, D. J., Logan, J. A., Yantosca, R. M., and Rind, D.: Why are there large differences between models in global budgets of tropospheric ozone?, J. Geophys. Res., 112, D05302, doi:10.1029/2006JD007801, 2007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Grewe, V. (2009). Impact of Lightning on Air Chemistry and Climate. In: Betz, H.D., Schumann, U., Laroche, P. (eds) Lightning: Principles, Instruments and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9079-0_25

Download citation

Publish with us

Policies and ethics