Thunder properties and mechanisms have been mostly studied between 20 and 40 years ago. Infrasonic signal (frequency lower than 20 Hz), also called infrasound, has been measured in parallel to acoustic signal when lightning occur. Recent technical developments and new interest to infrasound revive research about thunder. A European measurement campaign, dedicated to sprite research, has been organised in 2005. This paper shows new results about descriptions of infrasound from lightning: maximum distance from which this kind of infrasound can be detected, infrasound frequency spectrum from 0.1 to 10 Hz completing previous ones acquired above 1 Hz. More recently, it has been shown that also sprites produce infrasound. Three-dimensional locations of infrasound sources associated to infrasound from sprites are calculated using only infrasound characteristic when sprites are close to an infrasound station.


Infrasound Thunder Lightning Sprites 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bedard, A. J., Jr., W. A. Lyons, R. A. Armstrong, T. E. Nelson, B. Hill, and S. Gallagher, A search for low-frequency atmospheric acoustic waves associated with sprites, blue jets, elves and storm electrical activity, Eos Trans. AGU, 80(46), Fall Meet. Suppl., F227 (1999).Google Scholar
  2. Cansi, Y., An automatic seismic event processing for detection and location: the PMCC method, Geophys. Res. Lett., 22, 1021–1024 (1995).CrossRefGoogle Scholar
  3. Dessler, A. J., Infrasonic thunder, J. Geophys. Res., 78, 1889–1896 (1973).CrossRefGoogle Scholar
  4. Farges, T., E. Blanc, A. Le Pichon, T. Neubert, T. Allin, Identification of infrasound produced by sprites during the Sprite2003 campaign, Geophys. Res. Lett. 32, L01813, doi: 10.1029/2004GL021212 (2005).CrossRefGoogle Scholar
  5. Few, A. A., The production of lightning-associated infrasonic acoustic sources in thunderclouds, J. Geophys. Res., 90, 6175–6180 (1985).CrossRefGoogle Scholar
  6. Few, A. A., Acoustic radiations from lightning, in The Earth’s Electrical Environment, 46–60 pp., Washington, DC: National Academy Press (1986).Google Scholar
  7. Holmes, C. R., M. Brook, P. Krehbiel, and R. McCrory, On the power spectrum and mechanism of thunder, J. Geophys., Res., Vol. 76, 2106–2115, 1971.CrossRefGoogle Scholar
  8. Le Pichon, A., M. A. Garcés, E. Blanc, M. Barthelemy, and D. P. Drob, Acoustic propagation and atmosphere characteristics derived from infrasonic waves generated by the Concorde, J. Acoust. Soc. Am., 111, 629–641 (2002).CrossRefGoogle Scholar
  9. Le Pichon, A., L. Ceranna, M Garces, D. Drob D., and C. Millet, On using infrasound from interacting ocean swells for global continuous measurements of winds and temperature in the stratosphere, J. Geophys. Res., 111, D11106, doi: 10.1029/2005JD006690 (2006).CrossRefGoogle Scholar
  10. Liszka, L. J., The possible infrasound generation by sprites, J. Low Freq. Noise Vibr. Active Control, 23, 85–93 (2004).CrossRefGoogle Scholar
  11. MacGorman, D. R., A. A. Few, and T. L. Teer, Layered lightning activity, J. Geophys. Res., 86, 9900–9910 (1981).CrossRefGoogle Scholar
  12. Neubert, T., T. H. Allin, E. Blanc, T. Farges, C. Haldoupis, A. Mika, S. Soula, L. Knutsson, O. van der Velde, R. A. Marshall, U. Inan, G. Satori, J. Bor, A. Hughes, A. Collier, S. Laursen, and I. L. Rasmussen, Co-ordinated observations of transient luminous events during the EuroSprite2003 campaign, J. Atmos. Sol. Terr. Phys., 67, 807–820 (2005).CrossRefGoogle Scholar
  13. Pasko, V. P., U. S. Inan, and T. F. Bell, Spatial structure of sprites, Geophys. Res. Lett., 25, 2123–2126 (1998).CrossRefGoogle Scholar
  14. Pasko, V. P., and J. B. Snively, Mechanism of infrasound radiation from sprites, Eos Trans. AGU, 88(52), Fall Meet. Suppl., Abstract AE23A-0899, San Francisco, CA (2007).Google Scholar
  15. Rakov, V. A., and M. A. Uman, Lightning, Physics and Effects, Cambridge: Cambridge University Press (2003).Google Scholar
  16. Sutherland, L. C., and H. E. Bass, Atmospheric absorption at high altitudes, J. Acoust. Soc. Am., 115(3), 1012–1032 (2004).CrossRefGoogle Scholar
  17. Uman, M. A., The Lightning Discharge, 377 pp., London: Academic Press (1987).Google Scholar
  18. Vivas Veloso, J. A., D. R. Christie, P. Campus, M. Bell, T. L. Hoffmann, A. Langlois, P. Martysevich, E. Demirovik, J. Carvalho, and A. Kramer, Status report on the establishment of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) International Monitoring System (IMS) infrasound network, J. Acoust. Soc. Am., 112, 2352–2352 (2002).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Thomas Farges
    • 1
  1. 1.Commissariat à l’Energie Atomique Centre DAM-Ile de FranceDASEFrance

Personalised recommendations