Observation and Interpretation of Lightning Flashes with Electromagnetic Lightning Mapper

  • Eric Defer
  • Pierre Laroche

Abstract

We detail concurrent measurements recorded during natural lightning flashes with the ONERA-ITF VHF interferometers, the NASA-LDAR VHF time-of-arrival mapper and the space borne NASA-OTD optical sensor. The development of an intracloud (IC) flash is described based on the measurements of the VHF signal radiated during its occurrence. Optical radiation is compared to VHF radiation recorded during an IC flash and during a negative cloud-to-ground (CG) flash. The results of the analysis suggests that the new ONERA PROFEO lightning mapping sensor which combines both interferometric and time-of-arrival techniques will fit perfectly our observational needs to study the development of lightning flashes, to relate their occurrence relatively to the dynamical and microphysical properties of their parent storms, and to help modelling the multi-scale processes of a lightning flash. We also discuss the weakness of the use of lightning NOx (LiNOx) production per flash for global scale LiNOx estimate. We assess the importance of global lightning detection with respect to having sufficient information about lightning flashes for more realistic estimates LiNOx production.

Keywords

Lightning phenomenology Discharge physics Electromagnetic radiation Lightning detection technique NOx 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Betz, H.-D., K. Schmidt, P. Oettinger, and M. Wirz, 2004, Lightning detection with 3-D discrimination of intracloud and cloud-to-ground discharges, Geophys. Res. Lett., 31, L11108, doi:10.1029/2004GL019821.Google Scholar
  2. Blanchet, P., P. Lalande, and P. Laroche, 2006, PROFEO: Programme francilien d’études des orages, Proceeding of the 9th International Lightning Detection Conference, 24–25 April, Tucson, Arizona, USA.Google Scholar
  3. Boccippio, D. J., W. Koshak, R. Blakeslee, K. Driscol, D. Mach, D. Buechler, W. Boeck, H. J. Christian, and S. J. Goodman, 2000, The Optical Transient Detector (OTD): Instrument Characteristics and Cross-Sensor Validation, J. Atmos. Oceanic. Technol., 17, 441–458.CrossRefGoogle Scholar
  4. Boccippio, D. J., K. L. Cummins, H. J. Christian, and S. Goodman, 2001, Combined satellite and surface-based estimation of the intracloud / cloud-to-ground lightning ratio over the continental United States, Mon. Wea. Rev, 129, 108–122.CrossRefGoogle Scholar
  5. Christian, H. J.; R. J. Blakeslee, D. J. Boccippio, W. L. Boeck, D. E. Buechler, K. T. Driscoll, S. J. Goodman, J. M. Hall, W. J. Koshak, D. M. Mach, and M. F. Stewart, 2003, Global frequency and distribution of lightning as observed from space by the Optical Transient Detector, J. Geophys. Res., 108.Google Scholar
  6. Cummins, K. L., M. J. Murphy, E. A. Bardo, W. L. Hiscox, R. B. Pyle, and A. E. Pifer, 1998, A Combined TOA/MDF Technology Upgrade of the U.S. National Lightning Detection Network, J. Geophys. Res., 103(D8), 9035–9044.CrossRefGoogle Scholar
  7. Defer, E., J. E. Dye, W. Skamarock, and P. Laroche, 2003, Use of total lightning lengths to estimate NOx Production in a Colorado Storm, Proceedings of 12th International Conference on Atmospheric Electricity, Versailles, France.Google Scholar
  8. Defer, E., P. Blanchet, C. Théry, P. Laroche, J. Dye, M. Venticinque, and K. Cummins, 2001, Lightning activity for the July 10, 1996, storm during the Stratosphere-Troposphere Experiment: Radiation, Aerosol, and Ozone-A (STERAO-A) experiment, J. Geophys. Res., 106, 10,151–10,172.CrossRefGoogle Scholar
  9. Dye, J., B. A. Ridley, K. Bauman, W. Skamarock, M. Barth, M. Venticinque, E. Defer, P. Blanchet, C. Théry, P. Laroche, G. Hubler, D. D. Parnish, T. Ryerson, M. Trainer, G. Frost, J. S. Halloway, F. C. Fehsenfeld, A. Tuck, T. Matejka, D. Bartels, S. A. Rutledge, T. Lang, J. Stith, and R. Zern, 2000, An overview of STERAO/deep convection experiment with results for the July 10th storm, J. Geophys. Res., 105, 10,023–10,045.CrossRefGoogle Scholar
  10. Gallimberti, I., G. Bacchiega, A. Bondiou-Clergerie, and P. Lalande, 2002, Fundamental processes in long air gap discharges, C. R. Physique, 3,1335–1359.CrossRefGoogle Scholar
  11. Goodman, S. J., H. J. Christian, and W. D. Rust, 1988, A comparison of the optical pulse characteristics of intracloud and cloud-to-ground lightning as observed above clouds, J. Appl. Met., 1369–1381.Google Scholar
  12. Kawasaki, Z., T. Kanao, K. Matsuura, M. Nakano, K. Horii, and K. Nakamura, 1991, The electric field changes and UHF radiations caused by the triggered lightning in Japan, Geophys. Res. Lett., 18(9), 1711–1714.CrossRefGoogle Scholar
  13. Koshak, W. J., M. F. Stewart, H. J. Christian, J. W. Bergstrom, J. M. Hall, and R. J. Solakiewicz, 2000, Laboratory Calibration of the Optical Transient Detector and the Lightning Imaging Sensor, J. Atmos. Oceanic Technol, 17, 905–915.CrossRefGoogle Scholar
  14. Krehbiel, P. R., R. J. Thomas, W. Rison, T. Hamlin, J. Harlin, and M. Davis, 2000, GPS-based mapping system reveals lightning inside storms, EOS, 81, 21–25.CrossRefGoogle Scholar
  15. Lalande, P., A. Bondiou-Clergerie, G. Bacchiega, and I. Gallimberti, 2002, Observations and modeling of lightning leaders, C.R.Physique, 3, 1375–1392.CrossRefGoogle Scholar
  16. Laroche P., A. Bondiou, P. Blanchet, and J. Pigère, 1994, 3D VHF mapping of lightning discharge within a storm, Proceedings SEE “lightning and mountains”, Chamonix, France.Google Scholar
  17. MacGorman, D. R., and W. D. Rust, 1998, The Electrical Nature of Storms, 422 pp., Oxford Univ. Press, New York. 687 pp, Cambridge Univ. Press, New York.Google Scholar
  18. Maier L., C. Lennon, P. Krebhiel and M. Maier, 1996, Lightning as observed by a four-dimensional lightning location system at Kennedy Space Center, proceedings of 10th International Conference on Atmospheric Electricity, Osaka, Japon, 280–283.Google Scholar
  19. Maier L. M., and E. P. Krider, 1986, The charges that are deposited by cloud-to-ground lightning in Florida, J. Geophys. Res., 91, 13275–13289.CrossRefGoogle Scholar
  20. Mazur V., E. Williams, R. Boldi, L. Maier, and D. E. Proctor, 1997, Initial comparison of lightning mapping with operational time-of-arrival and interferometric systems, J. Geophys. Res., 102, 11071–11085.CrossRefGoogle Scholar
  21. Mazur V., 1989, Triggered lightning strikes to aircraft and natural intracloud discharges, J. Geophys. Res., 94, 3311–3325.CrossRefGoogle Scholar
  22. Parker, N. G. and E. P. Krider, 2003, A Portable, PC-Based System for Making Optical and Electromagnetic Measurements of Lightning, J. Appl. Met., 42, 739–751.CrossRefGoogle Scholar
  23. Pierce E. T., 1977, Atmospheric and radio noise , in “Lightning”, ch. 10, edited by R. H. Golde, Academic Press Inc., London.Google Scholar
  24. Proctor D. E., R. Uytenbogaardt, and B. M. Meredith, 1988, VHF radio pictures of lightning flashes to ground, J. Geophys. Res., 93, 12,683–12,727.CrossRefGoogle Scholar
  25. Proctor D. E., 1981, VHF radio pictures of cloud flashes, J. Geophys. Res., 86, 4041–4071.CrossRefGoogle Scholar
  26. Rhodes C. T., X.-M. Shao, P. R. Krehbiel, R. J. Thomas, and C. O. Hayenga, 1994, Observations of lightning phenomena using radio interferometry, J. Geophys. Res., 99, 13059–13082.CrossRefGoogle Scholar
  27. Richard P., A. Delannoy, G. Labaune and P. Laroche, 1986, Results of spatial and temporal characterization of the VHF-UHF radiation of lightning, J. Geophys. Res., 91, 1248–1260.CrossRefGoogle Scholar
  28. Rison, W., R. T., P. Krehbiel, T. Hamlin, and J. Harlin, 1999, A GPS-Based Three-Dimensional Lightning Mapping System: Initial Observations in Central New Mexico, Geophys. Res. Lett., 26, 3573–3576.Google Scholar
  29. Rust, W. D., D. R. MacGorman, E. C. Bruning, S. A. Weiss, P. R. Krehbiel, R. J. Thomas, W. Rison, T. Hamlin and J. Harlin, 2005, Inverted-polarity electrical structures in thunderstorms in the Severe Thunderstorm Electrification and Precipitation Study (STEPS), Atmospheric Research, 76, 247–271.CrossRefGoogle Scholar
  30. Saunders, C. P. R., W. D. Keith and P. P. Mitzeva, 1991, The effect of liquid water on thunderstorm charging, J. Geophys. Res., 96, 11007–11017.CrossRefGoogle Scholar
  31. Shao X.-M., and P. Krehbiel, 1996a, The spatial and temporal deve1opment of intracloud lightning, Proceedings of 10th International Conference on Atmospheric Electricity, Osaka, Japan.Google Scholar
  32. Shao X.-M., and P. R. Krehbiel, 1996b, The spatial and temporal development of intracloud lightning, J. Geophys. Res., 101, 26,641–26,668.Google Scholar
  33. Skamarock, W. C., J. E. Dye, E. Defer, M. C. Barth, J. L. Stith, B. A. Ridley, K. Baumann, 2003, Observational- and modeling-based budget of lightning-produced NOx in a continental thunderstorm, J. Geophys. Res., 108 (D10), 4305, doi:10.1029/2002JD002163.CrossRefGoogle Scholar
  34. Stolzenburg, M., W. D. Rust, and T. C. Marshall, 1998, Electrical structure in thunderstorm convective regions. 3. Synthesis, J. Geophys. Res., D103, 14,097–14,108.Google Scholar
  35. Takashi, T., 1978, Riming electrification as a charge generation mechanism in thunderstrom, J. Atmos. Sci., 35, 1536–1548.CrossRefGoogle Scholar
  36. Thomas, R. J., P. R. Krehbiel, W. Rison, T. Hamlin, J. Harlin, and D. Shown, 2001, Observations of VHF Source Powers Radiated by Lightning, Geophys. Res. Lett., 28(1), 143–146.CrossRefGoogle Scholar
  37. Thomas, R. J., P. R. Krehbiel, W. Rison, T. Hamlin, T., D. J. Boccippio, S. J. Goodman, and H. Christian, 2000, Comparison of ground-based 3-dimensional lightning mapping observations with satellite-based LIS observations in Oklahoma, Geophys. Res. Lett., Vol. 27, 1703–1706.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Eric Defer
    • 1
  • Pierre Laroche
    • 1
  1. 1.LERMA-Observatoire de ParisParisFrance

Personalised recommendations