Skip to main content

Ultra Low-Power Biomedical System Designs

  • Chapter
Ultra Low-Power Biomedical Signal Processing

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Finally, the methodology presented in the previous chapters will be employed in the design of several ultra low-power biomedical systems and analog wavelet filters. Two ultra low-power biomedical systems and four wavelet filter designs are presented in Chapter 7. The simulated and measured results demonstrate very good performance in generating the desired wavelet transform and achieving correct cardiac signal detection in an ultra low-power environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Straver, Design Manual – SIC3A, Internal Report, Delft University of Technology, Jan. 1999.

    Google Scholar 

  2. S. A. P. Haddad, S. Gieltjes, R. P. M. Houben and W. A. Serdijn, An ultra low-power dynamic translinear sense amplifier for pacemakers, in: Proc. ISCAS, Bangkok, Thailand, vol. 5, pp. 37-40, May 25-28, 2003.

    Google Scholar 

  3. E. Seevinck, Analysis and Synthesis of Translinear Integrated Circuits, Elsevier, Amsterdam, 1988.

    Google Scholar 

  4. J. Mulder, A. C. van der Woerd, W. A. Serdijn and A. H. M. van Roermund, An RMS-DC converter based on the dynamic translinear principle, IEEE Journal of Solid-State Circuits, vol. 32, no. 7, pp. 1146-1150, 1997.

    Article  Google Scholar 

  5. B. U. Kohler, C. Hennig and R. Orglmeister, The principles of software QRS detection, IEEE Engineering in Medicine and Biology, vol. 1, pp. 42-57, February 2002.

    Article  Google Scholar 

  6. S. A. P. Haddad, R. P. M. Houben and W. A. Serdijn, Analog wavelet transform employing dynamic translinear circuits for cardiac signal characterization, in: Proc. ISCAS, Bangkok, Thailand, vol. 1, pp. 121-124, May 25-28, 2003.

    Google Scholar 

  7. S. A. P. Haddad and W. A. Serdijn, Mapping the wavelet transform onto silicon: the dynamic translinear approach, in: Proc. ISCAS, Phoenix, USA, vol. 5, pp. 621-624, May 26-29, 2003.

    Google Scholar 

  8. H. Kamada and N. Aoshima, Analog Gabor transform filter with complex first order system, in: Proc. SICE, pp. 925-930, 1997.

    Google Scholar 

  9. B. Gilbert, Current-mode circuits from a translinear viewpoint: a tutorial, in: Analogue IC Design: The Current-Mode Approach, C. Toumazou, F. J. Lidgey, D. G. Haigh (eds.) IEE Circuits and Systems, Series 2, Peter Peregrinus, London, 1990 (Chapter 2).

    Google Scholar 

  10. J. S. Sahambi, S. N. Tandon and R. K. P. Bhatt, Using wavelet transform for ECG characterization, IEEE Engineering in Medicine and Biology, vol. 16, pp. 77-83, February 1997.

    Article  Google Scholar 

  11. S. A. P. Haddad, N. Verwaal, R. Houben and W. A. Serdijn, Optimized dynamic translinear implementation of the Gaussian wavelet transform, in: Proc. ISCAS, vol. 1, pp. 145-148, Vancouver, Canada, May 23-26, 2004.

    Google Scholar 

  12. S. A. P. Haddad, J. M. H. Karel, R. L. M. Peeters, R. L. Westra and W. A. Serdijn, Analog complex wavelet filters, in: Proc. ISCAS, pp. 3287-3290, Kobe, Japan, May 23-26, 2005.

    Google Scholar 

  13. I. Daubechies, Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992.

    MATH  Google Scholar 

  14. S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, San Diego, CA, 2001.

    Google Scholar 

  15. C. Toumazou, F. J. Lidgey and D. G. Haigh, Analogue IC Design: The Current-Mode Approach, IEE Circuits and Systems, Series 2, Peter Peregrinus, London, 1990.

    Google Scholar 

  16. S. A. P. Haddad, S. Bagga and W. A. Serdijn, Log-domain wavelet bases, IEEE Transactions on Circuits and Systems – I: Regular Papers, vol. 52, no. 10, pp. 2023-2032, October 2005.

    Article  Google Scholar 

  17. G. W. Roberts and V. W. Leung, Design and Analysis of Integrator-Based Log-Domain Filter Circuits, Kluwer, Dordrecht, The Netherlands, 2000.

    Google Scholar 

  18. S. A. P. Haddad, J. M. H. Karel, R. L. M. Peeters, R. L. Westra and W. A. Serdijn, Ultra low-power analog Morlet wavelet filter in 0.18 μ m BiCMOS Technology, in: Proc. ESSDERC-ESSCIRC, pp. 323-326, Grenoble, France, September 12-16, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro A. P. Haddad .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Haddad, S.A.P., Serdijn, W.A. (2009). Ultra Low-Power Biomedical System Designs. In: Ultra Low-Power Biomedical Signal Processing. Analog Circuits and Signal Processing. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9073-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9073-8_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9072-1

  • Online ISBN: 978-1-4020-9073-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics