Advertisement

Ultra Low-Power Integrator Designs

  • Sandro A. P. HaddadEmail author
  • Wouter A. Serdijn
Chapter
  • 1.3k Downloads
Part of the Analog Circuits and Signal Processing book series (ACSP)

The trend towards lower power consumption, lower supply voltage and higher frequency operation has increased the interest in new design techniques for analogue integrated filters. In Chapter 6, we focus on ultra low-power integrated continuous-time filter designs. The current state-of-the-art design approaches for such filters are transconductor–capacitor (G m –C) and dynamic translinear (log-domain) methods. A few ultra low-power integrator designs are presented, being, a pA/V Delta-G m CMOS triode-integrator, two Class-A log-domain integrators and an ultra low-power Class-AB sinh integrator. The integrators can be directly used in low-power analog filters and ultra low-power biomedical system designs. The advantages and the limitations of these techniques are also highlighted.

Keywords

Bipolar Transistor Total Harmonic Distortion Weak Inversion Capacitance Voltage Voltage Follower 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Schaumann and M. E. van Valkenburg, Design of Analog Filters, 2nd edn, Oxford University Press, Oxford, USA, 2001. Google Scholar
  2. [2]
    J. A. de Lima and W. A. Serdijn, A compact nA/V CMOS triode transconductor and its application to very-low frequency filters, in: Proc. ISCAS, Kobe, Japan, May 23–26, 2005. Google Scholar
  3. [3]
    R. W. Adams, Filtering in the log domain, Preprint 1470, presented at the 63rd AES Conference, New York, May 1979. Google Scholar
  4. [4]
    E. Seevinck, Companding current-mode integrator: a new circuit principle for continuous-time monolithic filters, Electronics Letters, vol. 26, no. 24, pp. 2046-2047, 1990. CrossRefGoogle Scholar
  5. [5]
    B. Gilbert, Translinear circuits: a proposed classification, Electronics Letters, vol. 11, no. 1, pp. 14-16, 1975. CrossRefGoogle Scholar
  6. [6]
    J. Mulder, W. A. Serdijn, A. C. van der Woerd, and A. H. M. van Roermund, Dynamic Translinear and Log-Domain Circuits: Analysis and Synthesis, Kluwer, Boston, MA, 1999. Google Scholar
  7. [7]
    J. Mulder, Static and dynamic translinear circuits, PhD thesis, Delft University of Technology, Oct. 1998 Google Scholar
  8. [8]
    D. R. Frey, Log Domain filtering: An approach to current mode filtering, Proc. Elect. Eng. G, vol. 140, pp. 406-416, 1993. Google Scholar
  9. [9]
    Y. Tsividis, Externally linear, time-invariant systems and their application to companding signal processors, IEEE Transactions on Circuits and Systems – II, vol. 44, pp. 65-85, 1997. CrossRefGoogle Scholar
  10. [10]
    D. R. Frey, Exponential state space filters: A generic current mode design strategy, IEEE Transactions on Circuits and Systems – I, vol. 43, pp. 34-42, 1996. CrossRefGoogle Scholar
  11. [11]
    J. Mulder, W. A. Serdijn, A. C. van der Woerd, and A. H. M. van Roermund, Dynamic translinear circuits – An overview, Analog Integrated Circuits and Signal Processing, vol. 22, nos 2-3, pp. 111-126, 2000. CrossRefGoogle Scholar
  12. [12]
    W. A. Serdijn, J. Mulder, A. C. van der Woerd, and A. H. M. van Roermund, The design of wide-tunable translinear second-order oscillators, in: Proc. IEEE ISCAS, Hong Kong, vol. 2, pp. 829–832, May 1997. Google Scholar
  13. [13]
    J. Mulder, A. C. van der Woerd, W. A. Serdijn, and A. H. M. van Roermund, An RMS-DC converter based on the dynamic translinear principle, IEEE Journal of Solid-State Circuits, vol. 32, no. 7, pp. 1146-1150, 1997. CrossRefGoogle Scholar
  14. [14]
    G. W. Roberts and V. W. Leung, Design and Analysis of Integrator-Based Log-Domain Filter Circuits, Kluwer, Dordrecht, The Netherlands, 2000. Google Scholar
  15. [15]
    M. N. El-Gamal and G. W. Roberts, A 1.2 V NPN-only integrator for log-domain filtering, IEEE Transactions on Circuits and Systems – II, vol. 49, no. 4, pp. 257-265, 2002. CrossRefGoogle Scholar
  16. [16]
    D. Python and C. Enz, A micropower class-AB CMOS log-domain filter for DECT applications, IEEE Journal of Solid-State Circuits, vol. 36, no. 7, pp. 1067-1075, 2001. CrossRefGoogle Scholar
  17. [17]
    W. A. Serdijn, M. Broest, J. Mulder, A. C. van der Woerd, and A. H. M. van Roermund, A low-voltage ultra low-power translinear integrator for audio filter applications, IEEE Journal of Solid-State Circuits, vol. 32, no. 4, pp. 577-582, 1997. CrossRefGoogle Scholar
  18. [18]
    C. Toumazou, J. Ngarmnil and T. S. Lande, Micropower log-domain filter for electronic cochlea, IEE Electronics Letters, vol. 30, no. 22, pp. 1839-1841, 1994. CrossRefGoogle Scholar
  19. [19]
    G. D. Duerden, G. W. Roberts and M. J. Deen, The development of bipolar log domain filters in a standard CMOS process, in: Proc. IEEE Int. Symp. Circuits and Systems, vol. 1, pp. 1470-1476, May 2001. Google Scholar
  20. [20]
    S. A. P. Haddad and W. A. Serdijn, High-frequency dynamic translinear and log-domain circuits in CMOS technology, in: Proc. IEEE Int. Symp. Circuits and Systems, vol. 3, pp. 313-316, May 2002. Google Scholar
  21. [21]
    G. Palumbo and S. Pennisi, A high-performance CMOS voltage follower, in: Proc. IEEE Int. Conf. Electronics, Circuits and Systems, vol. 2, pp. 21-24, 1998. Google Scholar
  22. [22]
    G. Palmisano and G. Palumbo, An optimized compensation strategy for two-stage CMOS OPAMPS, IEEE Transactions on Circuits and Systems – I, vol. 42, no. 3, pp. 178-182, March 1995. CrossRefGoogle Scholar
  23. [23]
    C. J. M. Verhoeven, A. van Staveren, G. L. E. Monna, M. H. L. Kouwenhoven, and E. Yildiz, Structured Electronic Design – Negative-Feedback Amplifiers, Kluwer, Boston, MA, 2003. zbMATHGoogle Scholar
  24. [24]
    D. R. Frey and A. T. Tola, A state-space formulation for externally linear class AB dynamical circuits, IEEE Transactions on Circuits and Systems – II, vol. 46, no. 3, pp. 306-314, 1999. CrossRefGoogle Scholar
  25. [25]
    W. A. Serdijn, M. H. L. Kouwenhoven, J. Mulder, and A. H. M. van Roermund, Design of high dynamic range fully integrable translinear filters, in: Analog Integrated Circuits and Signal Processing, vol. 19, Kluwer, pp. 223-239, 1999. Google Scholar
  26. [26]
    M. Punzenberger and C. Enz, A 1.2-V low-power BiCMOS class AB log-domain filter, IEEE Journal of Solid-State Circuits, vol. 32, no. 12, pp. 1968-1978, 1997. CrossRefGoogle Scholar
  27. [27]
    M. N. El-Gamal, R. A. Baki and A. Bar-Dor, 30–100-MHz NPN-only variable-gain class-AB instantaneous companding filters for 1.2-V applications, IEEE Journal of Solid-State Circuits, vol. 35, no. 12, pp. 1853-1864, 2000. CrossRefGoogle Scholar
  28. [28]
    X. Redondo and F. Serra-Graells, 1V Compact class-AB CMOS log filters, in: Proceedings IEEE International Symposium Circuits and Systems, pp. 2000-2003, May 2005. Google Scholar
  29. [29]
    C. Toumazou, G. Moschytz, and B. Gilbert, Trade-Offs in Analog Circuit Design, Kluwer, Dordrecht, The Netherlands, 2002. CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  1. 1.Freescale SemiconductorCampinas-SPBrazil
  2. 2.Electronics Research Lab.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations