Analog Wavelet Filters: The Need for Approximation

  • Sandro A. P. HaddadEmail author
  • Wouter A. Serdijn
Part of the Analog Circuits and Signal Processing book series (ACSP)

From its definition, we stated that the implementation of the wavelet transform is based on the design of a bandpass filter that presents an impulse response equal to the desired wavelet base. In order to obtain a synthesizable transfer function of a particular wavelet filter, mathematical approximation techniques are required. In Chapter 4, we present several methods to obtain good approximations in the time domain of wavelet bases functions. One important objective of the introduced approaches is that the resulting approximated function should be rational and stable in the Laplace domain. This entails that the approximating function leads to a physically realizable network. Nevertheless, due to limitations in chip area, power consumption and coefficient matching, there is a trade-off between the approximation accuracy versus the order of the filter to be implemented. Thus, the design challenge is to obtain a low-order system while preserving a good approximation to the intended function.


Transfer Function Mean Square Error Impulse Response Wavelet Base Morlet Wavelet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. L. Su, Time Domain Synthesis of Linear Networks, Prentice-Hall, Englewood Cliffs, NJ, 1971. Google Scholar
  2. [2]
    H. Kamada and N. Aoshima, Analog Gabor transform filter with complex first order system, in: Proc. SICE, Tokushima, Japan, pp. 925-930, Jul 1997. Google Scholar
  3. [3]
    N. Aoshima, Analog realization of complex first order system and its application to vowel recognition, in: Proc. SICE, Hokkaido, Japan, pp. 1239-1244, 1995. Google Scholar
  4. [4]
    S. A. P. Haddad, R. P. M. Houben and W. A. Serdijn, Analog wavelet transform employing dynamic translinear circuits for cardiac signal characterization, in: Proc. ISCAS, Bangkok, Thailand, vol. 1, pp. I-121-124, May 25-28, 2003. Google Scholar
  5. [5]
    G. A. Baker Jr., Essentials of Pade Approximants, Academic Press, New York, 1975. zbMATHGoogle Scholar
  6. [6]
    A. Bultheel and M. Van Barel, Pade technoques for model reduction in linear system theory: a survey, J. Comput. Appl. Math., vol. 14, pp. 401-438, 1986. CrossRefMathSciNetGoogle Scholar
  7. [7]
    S. A. P. Haddad, S. Bagga and W. A. Serdijn, Log-domain wavelet bases, IEEE Transactions on Circuits and Systems – I: Regular Paper, vol. 52, no. 10, pp. 2023-2032, 2005. CrossRefGoogle Scholar
  8. [8]
    S. A. P. Haddad, N. Verwaal, R. Houben and W. A. Serdijn, Optimized dynamic translinear implementation of the Gaussian wavelet transform, in: Proc. IEEE Int. Symp. Circuits and Systems, Vancouver, Canada, vol. 1, pp. 145-148, May 23-26, 2004. Google Scholar
  9. [9]
    D. Zwillinger, Standard Mathematical Tables and Formulae, 30th edn, CRC Press, Boca Raton, FL, 1996. zbMATHGoogle Scholar
  10. [10]
    J. M. H. Karel, R. L. M. Peeters, R. L. Westra, S. A. P. Haddad and W. A. Serdijn, Wavelet approximation for implementation in dynamic translinear circuits, in: Proc. IFAC World Congress 2005, Prague, July 4-8, 2005. Google Scholar
  11. [11]
    J. M. H. Karel, R. L. M. Peeters, R. L. Westra, S. A. P. Haddad and W. A. Serdijn, An L 2 -based approach for wavelet approximation, in: Proc. CDC-ECC 2005, Seville, Spain, December 12-15, 2005. Google Scholar
  12. [12]
    J. M. H. Karel, R. L. M. Peeters, R. L. Westra, S. A. P. Haddad and W. A. Serdijn, Optimal discrete wavelet design for cardiac signal processing, in: Proc. EMBC 2005, Shanghai, China, September 1-4, 2005. Google Scholar
  13. [13]
    T. Kailath, Linear Systems, Prentice Hall, Englewood Cliffs, NJ, 1980. zbMATHGoogle Scholar
  14. [14]
    J. Leblond and M. Olivi, Weighted H 2 -approximation of transfer functions, Math. Control Signals Syst., vol. 11, pp. 28-39, 1998. zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    I. M. Filanovsky and P. N. Matkhanov, Synthesis of time delay networks approximating the pulse response described by an integer power of a sinusoid over its semi-period, Analog Integrated Circuits and Signal Processing, vol. 28, no. 1, pp. 83-90, 2001. CrossRefGoogle Scholar
  16. [16]
    R. Schaumann and M. V. Valkenburg, Design of Analog Filters, Oxford University Press, London, ISBN: 0-19-511877-4. Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  1. 1.Freescale SemiconductorCampinas-SPBrazil
  2. 2.Electronics Research Lab.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations