Mathematical Modeling of Immunosenescence: Scenarios, Processes and Limitations

  • A. A. Romanyukha
  • S. G. Rudnev
  • T. A. Sannikova
  • A. I. Yashin

Abstract

Mathematical modeling of immunosenescence is the new area of research emerging at the interface of the immunology, gerontology, and mathematics. In this paper we outline basic variables important for modeling aging immunity. We discuss the role of evolution in shaping pattern of aging in the immune system of modern humans. We investigate mathematical models of postnatal changes in the population of peripheral T-cells, effects of the antigenic load during development on the body growth, and contribution of immunosenescence to the old age increase in the risk of death from respiratory infections.

Antigenic load aging immunity mortality from infections body growth population of T-cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arpadi SM, Cuff PA, Kotler DP, Wang J, Bamji M, Lange M, Pierson RN, Matthews DE (2000) Growth velocity, fat-free mass and energy intake are inversely related to viral load in HIVinfected children. J Nutr 130:2498–2502PubMedGoogle Scholar
  2. Bjorkander J, Bake B, Hanson LA (1984) Primary hypogammaglobulinaemia: impaired lung function and body growth with delayed diagnosis and inadequate treatment. Eur J Respir Dis 65:529–536PubMedGoogle Scholar
  3. Bocharov GA, Romanyukha AA (1994) Mathematical model of antiviral immune response III. Influenza A virus infection. J Theor Biol 167:323–360PubMedCrossRefGoogle Scholar
  4. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu C-P, Morin GB, Harley CB, Shay J W, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352PubMedCrossRefGoogle Scholar
  5. Dutilh BE, De Boer RJ (2003) Decline in excision circles requires homeostatic renewal or homeostatic death of naive T-cells. J Theor Biol 224:351–358PubMedCrossRefGoogle Scholar
  6. Epel E S, Blackburn E H, Lin J, Dhabhar F S, Adler N E, Morrow J D, Cawthon R M (2004) Accelerated telomere shortening in response to life stress. PNAS 101:17312–17315PubMedCrossRefGoogle Scholar
  7. Hazenberg MD, Cohen Stuart JWT, Otto SA, Borleffs JCC, Boucher CAB, de Boer RJ, Miedema F, Hamann D (2000) T-cell division in human immunodeficiency virus (HIV)-1 infection is mainly due to immune activation: a longitudinal analysis in patients before and during highly active antiretroviral therapy (HAART). Blood 95:249–255PubMedGoogle Scholar
  8. Hazenberg MD, Otto SA, van Rossum AMC, Schrerpbier HJ, de Groot R, Kuijpers TW, Lange JMA, Hamann D, de Boer RJ, Borghans JAM, Miedema F (2004) Establishment of the CD4‫ T-cell pool in healthy children and untreated children infected with HIV-1. Blood 104:3513–3519PubMedCrossRefGoogle Scholar
  9. King CL, Malhotra I, Wamachi A et al (2002) Acquired immune responses to Plasmodium falciparum merozoite surface protein-1 in the human fetus. J Immunol 168;356–364PubMedGoogle Scholar
  10. Kleiber M (1932) Body size and metabolism. Hilgardia 6:315–353Google Scholar
  11. Lochmiller RL, Deerenberg C (2000) Trade-offs in evolutionary immunology: just what is the cost of immunity? OIKOS 88:7–98CrossRefGoogle Scholar
  12. Marchant A, Appay V, Van Der Sande M et al (2003) Mature CD8(+) T lymphocyte response to viral infection during fetal life. J Clin Invest 111:1747–1755PubMedGoogle Scholar
  13. Marchuk G (1997) Mathematical modelling of immune response in infectious diseases. Kluwer Academic Publishers, DordrechtGoogle Scholar
  14. Marchuk GI, Petrov RV, Romanyukha AA, Bocharov GA (1991) Mathematical model of antiviral immune response. I. Data analysis, generalized picture construction and parameters evaluation for hepatitis B. J Theor Biol 151:P1–40Google Scholar
  15. McDade TW (2003) Life history theory and the immune system: steps toward a human ecological immunology. Yearbook of physical anthropology 46:100–125CrossRefGoogle Scholar
  16. Romanyukha AA, Rudnev SG (2001) A variational principle for modeling infection immunity by the example of pneumonia. Math Modelling 13:P65–84 (in Russian)Google Scholar
  17. Romanyukha AA, Yashin AI (2003) Age related changes in population of peripheral T-cells: towards a model of immunosenescence. Mech Ageing Dev 124:P433–443PubMedCrossRefGoogle Scholar
  18. Rufer N, Brümmendorf TH, Kolvraa S, Bischoff C, Christensen K, Wadsworth L, Schulzer M, Lansdorp PM (1999) Telomere fluorescense measurements in granulocytes and T-lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T-cells in early childhood. J Exp Med 190:157–167PubMedCrossRefGoogle Scholar
  19. Sannikova TE (2007) Analysis of infectious mortality by means of the individualized risk model. ECMTB05 conference proceedings “Mathematical modeling of biological systems, volume II”, A Deutsch et al (ed) Birkhäuser, Boston, pp 169–181Google Scholar
  20. Sannikova TE, Rudnev SG, Romanyukha AA, Yashin AI (2004) Immune system aging may be affected by HIV infection: mathematical model of immunosenescence. Russ J Numer Anal Math Modelling 19:315–329CrossRefGoogle Scholar
  21. Segerstrom S C, Miller G E (2004) Psychological stress and the human immune system: a metaanalytic study of 30 years of inquiry. Psychol Bull 130:601–630PubMedCrossRefGoogle Scholar
  22. Steinmann GG, Klaus B, Müller-Hermelink HK (1985) The involution of the ageing human thymic epithelium is independent of puberty. A morphometric study. Scand J Immunol 22:563–575PubMedCrossRefGoogle Scholar
  23. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359CrossRefGoogle Scholar
  24. Unutmaz D, Pileri P, Abrignani S (1994) Antigen-independent activation of naive and memory resting T-cells by a cytokine combination. J Exp Med 180:1159–1164PubMedCrossRefGoogle Scholar
  25. Valentin J (2002) Basic anatomical and physiological data for use in radiological protection: reference values. ICRP Publication 89. Ann ICRP 32:1–277CrossRefGoogle Scholar
  26. West JB, Brown JH (2005) The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J Exp Biol 208:1575–1592PubMedCrossRefGoogle Scholar
  27. Ye P, Kirschner DE (2002) Reevaluation of T-cell receptor excision circles as a measure of human recent thymic emigrants. J Immunol 169:4968–4979Google Scholar
  28. Zeichner SL. Palumbo P, Feng Y, Xiao X, Gee D, Sleasman J, Goodenow M, Biggar R, Dimitrov D (1999) Rapid telomere shortening in children. Blood 93:2824–2830PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • A. A. Romanyukha
    • 1
  • S. G. Rudnev
    • 1
  • T. A. Sannikova
    • 1
  • A. I. Yashin
    • 2
  1. 1.Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.Center for Population Health and AgingDuke UniversityDurhamUSA

Personalised recommendations