Advertisement

Molecular and Cellular Aspects of Macrophage Aging

  • Carlos Sebastián
  • Jorge Lloberas
  • Antonio Celada

Abstract

Macrophages are key cells in innate and adaptive immune function. These cells are involved in the destruction of bacteria, parasites, viruses and tumor cells and lead to the initiation of the inflammatory process. In addition, macrophages are responsible for processing antigens and presenting digested peptides to T-lymphocytes initiating the adaptive immune response. Finally, macrophages participate in the resolution of the inflammatory process by promoting tissue repair. Macrophage functions are affected by aging, thereby contributing to the immunosenescence of adaptive and innate immunity. Here, we summarize data about the effects of aging on macrophages and we discuss the molecular events that could be involved in this process.

Aging DNA damage Immunosenescence Inflammation Macrophages 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2:675–680PubMedCrossRefGoogle Scholar
  2. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732–738PubMedCrossRefGoogle Scholar
  3. Aloisi F (2005) Cytokine production. In: Kettenmann HRRB (ed) Neuroglia. Oxford University Press, New York, pp 285–301Google Scholar
  4. Alvarez E, Machado A, Sobrino F, Santa Maria C (1996) Nitric oxide and superoxide anion production decrease with age in resident and activated rat peritoneal macrophages. Cell Immunol 169:152–155PubMedCrossRefGoogle Scholar
  5. Allsopp RC, Cheshier S, Weissman IL (2001) Telomere shortening accompanies increased cell cycle activity during serial transplantation of hematopoietic stem cells. J Exp Med 193:917–924PubMedCrossRefGoogle Scholar
  6. Allsopp RC, Morin GB, DePinho R, Harley CB, Weissman IL (2003) Telomerase is required to slow telomere shortening and extend replicative lifespan of HSCs during serial transplantation. Blood 102:517–520PubMedCrossRefGoogle Scholar
  7. Arkins S, Rebeiz N, Biragyn A, Reese DL, Kelley KW (1993) Murine macrophages express abundant insulin-like growth factor-I class I Ea and Eb transcripts. Endocrinology 133:2334–2343PubMedCrossRefGoogle Scholar
  8. Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, Gherardi RK, Chazaud B (2007) Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 204:1057–1069PubMedCrossRefGoogle Scholar
  9. Ashcroft GS, Horan MA, Ferguson MW (1997) The effects of ageing on wound healing: immunolocalisation of growth factors and their receptors in a murine incisional model. J Anat 190(Pt 3):351–365PubMedCrossRefGoogle Scholar
  10. Ashcroft GS, Horan MA, Ferguson MW (1998) Aging alters the inflammatory and endothelial cell adhesion molecule profiles during human cutaneous wound healing. Lab Invest 78:47–58PubMedGoogle Scholar
  11. Aspinall R (1997) Age-associated thymic atrophy in the mouse is due to a deficiency affecting rearrangement of the TCR during intrathymic T cell development. J Immunol 158:3037–3045PubMedGoogle Scholar
  12. Bertho JM, Demarquay C, Moulian N, Van Der Meeren A, Berrih-Aknin S, Gourmelon P (1997) Phenotypic and immunohistological analyses of the human adult thymus: evidence for an active thymus during adult life. Cell Immunol 179:30–40PubMedCrossRefGoogle Scholar
  13. Bhushan M, Cumberbatch M, Dearman RJ, Andrew SM, Kimber I, Griffiths CE (2002) Tumour necrosis factor-alpha-induced migration of human Langerhans cells: the influence of ageing. Br J Dermatol 146:32–40PubMedCrossRefGoogle Scholar
  14. Blackburn EH (2001) Switching and signaling at the telomere. Cell 106:661–673PubMedCrossRefGoogle Scholar
  15. Blasco MA (2002) Immunosenescence phenotypes in the telomerase knockout mouse. Springer Semin Immunopathol 24:75–85PubMedCrossRefGoogle Scholar
  16. Blumberg J (2004) Use of biomarkers of oxidative stress in research studies. J Nutr 134:3188S–3189SPubMedGoogle Scholar
  17. Boehmer ED, Goral J, Faunce DE, Kovacs EJ (2004) Age-dependent decrease in Toll-like receptor 4-mediated proinflammatory cytokine production and mitogen-activated protein kinase expression. J Leukoc Biol 75:342–349PubMedCrossRefGoogle Scholar
  18. Breitbart E, Wang X, Leka LS, Dallal GE, Meydani SN, Stollar BD (2002) Altered memory B-cell homeostasis in human aging. J Gerontol A Biol Sci Med Sci 57:B304–B311PubMedGoogle Scholar
  19. Butcher SK, Chahal H, Nayak L, Sinclair A, Henriquez NV, Sapey E, O’Mahony D, Lord JM (2001) Senescence in innate immune responses: reduced neutrophil phagocytic capacity and CD16 expression in elderly humans. J Leukoc Biol 70:881–886PubMedGoogle Scholar
  20. Cao J, Venton L, Sakata T, Halloran BP (2003) Expression of RANKL and OPG correlates with age-related bone loss in male C57BL/6 mice. J Bone Miner Res 18:270–277PubMedCrossRefGoogle Scholar
  21. Cao JJ, Wronski TJ, Iwaniec U, Phleger L, Kurimoto P, Boudignon B, Halloran BP (2005) Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse. J Bone Miner Res 20:1659–1668PubMedCrossRefGoogle Scholar
  22. Capsoni F, Minonzio F, Ongari AM, Bonara P, Pinto G, Carbonelli V, Lazzarin A, Zanussi C (1994) Fc receptors expression and function in mononuclear phagocytes from AIDS patients: modulation by IFN-gamma. Scand J Immunol 39:45–50PubMedCrossRefGoogle Scholar
  23. Colonna-Romano G, Bulati M, Aquino A, Scialabba G, Candore G, Lio D, Motta M, Malaguarnera M, Caruso C (2003) B cells in the aged: CD27, CD5, and CD40 expression. Mech Ageing Dev 124:389–393PubMedCrossRefGoogle Scholar
  24. Conde JR, Streit WJ (2006) Effect of aging on the microglial response to peripheral nerve injury. Neurobiol Aging 27:1451–1461PubMedCrossRefGoogle Scholar
  25. Cullell-Young M, Barrachina M, Lopez-Lopez C, Gonalons E, Lloberas J, Soler C, Celada A (2001) From transcription to cell surface expression, the induction of MHC class II I-A alpha by interferon-gamma in macrophages is regulated at different levels. Immunogenetics 53:136–144PubMedCrossRefGoogle Scholar
  26. Cumberbatch M, Kimber I (1992) Dermal tumour necrosis factor-alpha induces dendritic cell migration to draining lymph nodes, and possibly provides one stimulus for Langerhans’ cell migration. Immunology 75:257–263PubMedGoogle Scholar
  27. Curtis H, Crowley C (1963) Chromosome aberrations in liver cells in relation to the somatic mutation theory of aging. Radiat Res 19:337–344PubMedCrossRefGoogle Scholar
  28. Chan SW, Blackburn EH (2002) New ways not to make ends meet: telomerase, DNA damage proteins and heterochromatin. Oncogene 21:553–563PubMedCrossRefGoogle Scholar
  29. Chelvarajan RL, Liu Y, Popa D, Getchell ML, Getchell TV, Stromberg AJ, Bondada S (2006) Molecular basis of age-associated cytokine dysregulation in LPS-stimulated macrophages. J Leukoc Biol 79:1314–1327PubMedCrossRefGoogle Scholar
  30. Chua KF, Mostoslavsky R, Lombard DB, Pang WW, Saito S, Franco S, Kaushal D, Cheng HL, Fischer MR, Stokes N, Murphy MM, Appella E, Alt FW (2005) Mammalian SIRT1 limits replicative life span in response to chronic genotoxic stress. Cell Metab 2:67–76PubMedCrossRefGoogle Scholar
  31. Danon D, Kowatch MA, Roth GS (1989) Promotion of wound repair in old mice by local injection of macrophages. Proc Natl Acad Sci U S A 86:2018–2020PubMedCrossRefGoogle Scholar
  32. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758PubMedCrossRefGoogle Scholar
  33. Davila DR, Edwards CK 3rd, Arkins S, Simon J, Kelley KW (1990) Interferon-gamma-induced priming for secretion of superoxide anion and tumor necrosis factor-alpha declines in macrophages from aged rats. FASEB J 4:2906–2911PubMedGoogle Scholar
  34. de Haan G, Van Zant G (1999) Dynamic changes in mouse hematopoietic stem cell numbers during aging. Blood 93:3294–3301PubMedGoogle Scholar
  35. de Haan G, Nijhof W, Van Zant G (1997) Mouse strain-dependent changes in frequency and proliferation of hematopoietic stem cells during aging: correlation between lifespan and cycling activity. Blood 89:1543–1550PubMedGoogle Scholar
  36. De La Fuente M (1985) Changes in the macrophage function with aging. Comp Biochem Physiol A 81:935–938PubMedCrossRefGoogle Scholar
  37. De la Fuente M, Medina S, Del Rio M, Ferrandez MD, Hernanz A (2000) Effect of aging on the modulation of macrophage functions by neuropeptides. Life Sci 67:2125–2135CrossRefGoogle Scholar
  38. de la Fuente M, Hernanz A, Guayerbas N, Alvarez P, Alvarado C (2004) Changes with age in peritoneal macrophage functions. Implication of leukocytes in the oxidative stress of senescence. Cell Mol Biol (Noisy-le-grand) 50 Online Pub:OL683–OL690Google Scholar
  39. de Lange T (2002) Protection of mammalian telomeres. Oncogene 21:532–540PubMedCrossRefGoogle Scholar
  40. Delpedro AD, Barjavel MJ, Mamdouh Z, Faure S, Bakouche O (1998) Signal transduction in LPSactivated aged and young monocytes. J Interferon Cytokine Res 18:429–437PubMedCrossRefGoogle Scholar
  41. Ding A, Hwang S, Schwab R (1994) Effect of aging on murine macrophages. Diminished response to IFN-gamma for enhanced oxidative metabolism. J Immunol 153:2146–2152PubMedGoogle Scholar
  42. Donnini A, Argentati K, Mancini R, Smorlesi A, Bartozzi B, Bernardini G, Provinciali M (2002) Phenotype, antigen-presenting capacity, and migration of antigen-presenting cells in young and old age. Exp Gerontol 37:1097–1112PubMedCrossRefGoogle Scholar
  43. Effros RB (2001) Ageing and the immune system. Novartis Found Symp 235:130–139; discussion 139–145, 146–139Google Scholar
  44. Effros RB, Boucher N, Porter V, Zhu X, Spaulding C, Walford RL, Kronenberg M, Cohen D, Schachter F (1994) Decline in CD28+ T cells in centenarians and in long-term T cell cultures: a possible cause for both in vivo and in vitro immunosenescence. Exp Gerontol 29:601–609PubMedCrossRefGoogle Scholar
  45. Engelhardt M, Kumar R, Albanell J, Pettengell R, Han W, Moore MA (1997) Telomerase regulation, cell cycle and telomere stability in primitive hematopoietic cells. Blood 90:182–193PubMedGoogle Scholar
  46. Fabris N, Mocchegiani E, Provinciali M (1997) Plasticity of neuroendocrine-thymus interactions during aging. Exp Gerontol 32:415–429PubMedCrossRefGoogle Scholar
  47. Fazzalari NL, Kuliwaba JS, Atkins GJ, Forwood MR, Findlay DM (2001) The ratio of messenger RNA levels of receptor activator of nuclear factor kappaB ligand to osteoprotegerin correlates with bone remodeling indices in normal human cancellous bone but not in osteoarthritis. J Bone Miner Res 16:1015–1027PubMedCrossRefGoogle Scholar
  48. Fietta A, Merlini C, De Bernardi PM, Gandola L, Piccioni PD, Grassi C (1993) Non specific immunity in aged healthy subjects and in patients with chronic bronchitis. Aging (Milano) 5:357–361Google Scholar
  49. Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254PubMedCrossRefGoogle Scholar
  50. Frucht DM, Fukao T, Bogdan C, Schindler H, O’Shea JJ, Koyasu S (2001) IFN-gamma production by antigen-presenting cells: mechanisms emerge. Trends Immunol 22:556–560PubMedCrossRefGoogle Scholar
  51. Garg M, Luo W, Kaplan AM, Bondada S (1996) Cellular basis of decreased immune responses to pneumococcal vaccines in aged mice. Infect Immun 64:4456–4462PubMedGoogle Scholar
  52. Geiger H, Van Zant G (2002) The aging of lympho-hematopoietic stem cells. Nat Immunol 3:329–333PubMedCrossRefGoogle Scholar
  53. George AJ, Ritter MA (1996) Thymic involution with ageing: obsolescence or good housekeeping? Immunol Today 17:267–272PubMedCrossRefGoogle Scholar
  54. Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL (2001) Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol 167:1882–1885PubMedGoogle Scholar
  55. Gonalons E, Barrachina M, Garcia-Sanz JA, Celada A (1998) Translational control of MHC class II I-A molecules by IFN-gamma. J Immunol 161:1837–1843PubMedGoogle Scholar
  56. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35PubMedCrossRefGoogle Scholar
  57. Gosain A, DiPietro LA (2004) Aging and wound healing. World J Surg 28:321–326PubMedCrossRefGoogle Scholar
  58. Harrison DE, Astle CM (1982) Loss of stem cell repopulating ability upon transplantation. Effects of donor age, cell number and transplantation procedure. J Exp Med 156:1767–1779PubMedCrossRefGoogle Scholar
  59. Hartman ME, O’Connor JC, Godbout JP, Minor KD, Mazzocco VR, Freund GG (2004) Insulin receptor substrate-2-dependent interleukin-4 signaling in macrophages is impaired in two models of type 2 diabetes mellitus. J Biol Chem 279:28045–28050PubMedCrossRefGoogle Scholar
  60. Hastie ND, Dempster M, Dunlop MG, Thompson AM, Green DK, Allshire RC (1990) Telomere reduction in human colorectal carcinoma and with ageing. Nature 346:866–868PubMedCrossRefGoogle Scholar
  61. Hekimi S, Guarente L (2003) Genetics and the specificity of the aging process. Science 299:1351–1354PubMedCrossRefGoogle Scholar
  62. Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, Horiuchi T, Tomizawa H, Takeda K, Akira S (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3:196–200PubMedCrossRefGoogle Scholar
  63. Herrero C, Marques L, Lloberas J, Celada A (2001) IFN-gamma-dependent transcription of MHC class II IA is impaired in macrophages from aged mice. J Clin Invest 107:485–493PubMedCrossRefGoogle Scholar
  64. Herrero C, Sebastian C, Marques L, Comalada M, Xaus J, Valledor AF, Lloberas J, Celada A (2002) Immunosenescence of macrophages: reduced MHC class II gene expression. Exp Gerontol 37:389–394PubMedCrossRefGoogle Scholar
  65. Hirokawa K (1977) The thymus and aging. In: Immunology and aging. In: Makinodan TJJE (ed). Plenum Press, New York, pp 51–76Google Scholar
  66. Hohaus S, Petrovick MS, Voso MT, Sun Z, Zhang DE, Tenen DG (1995) PU.1 (Spi-1) and C/EBP alpha regulate expression of the granulocyte-macrophage colony-stimulating factor receptor alpha gene. Mol Cell Biol 15:5830–5845PubMedGoogle Scholar
  67. Hornsby PJ, Yang L, Gunter LE (1992) Demethylation of satellite I DNA during senescence of bovine adrenocortical cells in culture. Mutat Res 275:13–19PubMedGoogle Scholar
  68. Howard BH (1996) Replicative senescence: considerations relating to the stability of heterochromatin domains. Exp Gerontol 31:281–293PubMedCrossRefGoogle Scholar
  69. Hume DA, Robinson AP, MacPherson GG, Gordon S (1983) The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80. Relationship between macrophages, Langerhans cells, reticular cells, and dendritic cells in lymphoid and hematopoietic organs. J Exp Med 158:1522–1536PubMedCrossRefGoogle Scholar
  70. Ikeda T, Utsuyama M, Hirokawa K (2001) Expression profiles of receptor activator of nuclear factor kappaB ligand, receptor activator of nuclear factor kappaB, and osteoprotegerin messenger RNA in aged and ovariectomized rat bones. J Bone Miner Res 16:1416–1425PubMedCrossRefGoogle Scholar
  71. Imai T, Nagira M, Takagi S, Kakizaki M, Nishimura M, Wang J, Gray PW, Matsushima K, Yoshie O (1999) Selective recruitment of CCR4-bearing Th2 cells toward antigen-presenting cells by the CC chemokines thymus and activation-regulated chemokine and macrophage-derived chemokine. Int Immunol 11:81–88PubMedCrossRefGoogle Scholar
  72. Inamizu T, Chang MP, Makinodan T (1985) Influence of age on the production and regulation of interleukin-1 in mice. Immunology 55:447–455PubMedGoogle Scholar
  73. Ito K, Hirao A, Arai F, Matsuoka S, Takubo K, Hamaguchi I, Nomiyama K, Hosokawa K, Sakurada K, Nakagata N, Ikeda Y, Mak TW, Suda T (2004) Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431:997–1002PubMedCrossRefGoogle Scholar
  74. Iwama H, Ohyashiki K, Ohyashiki JH, Hayashi S, Yahata N, Ando K, Toyama K, Hoshika A, Takasaki M, Mori M, Shay JW (1998) Telomeric length and telomerase activity vary with age in peripheral blood cells obtained from normal individuals. Hum Genet 102:397–402PubMedCrossRefGoogle Scholar
  75. Kanungo MS (1975) A model for ageing. J Theor Biol 53:253–261PubMedCrossRefGoogle Scholar
  76. Kelley KW, Arkins S, Minshall C, Liu Q, Dantzer R (1996) Growth hormone, growth factors and hematopoiesis. Horm Res 45:38–45PubMedCrossRefGoogle Scholar
  77. Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120:449–460PubMedCrossRefGoogle Scholar
  78. Khare V, Sodhi A, Singh SM (1996) Effect of aging on the tumoricidal functions of murine peritoneal macrophages. Nat Immun 15:285–294PubMedGoogle Scholar
  79. Kissin E, Tomasi M, McCartney-Francis N, Gibbs CL, Smith PD (1997) Age-related decline in murine macrophage production of nitric oxide. J Infect Dis 175:1004–1007PubMedCrossRefGoogle Scholar
  80. Kraatz J, Clair L, Rodriguez JL, West MA (1999) Macrophage TNF secretion in endotoxin tolerance: role of SAPK, p38, and MAPK. J Surg Res 83:158–164PubMedCrossRefGoogle Scholar
  81. Kregel KC, Zhang HJ (2007) An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol 292:R18–R36PubMedGoogle Scholar
  82. Kropf P, Herath S, Weber V, Modolell M, Muller I (2003) Factors influencing Leishmania major infection in IL-4-deficient BALB/c mice. Parasite Immunol 25:439–447PubMedCrossRefGoogle Scholar
  83. Lansdorp PM (2005) Major cutbacks at chromosome ends. Trends Biochem Sci 30:388–395PubMedCrossRefGoogle Scholar
  84. Lee J, Ryu H, Ferrante RJ, Morris SM, Jr., Ratan RR (2003) Translational control of inducible nitric oxide synthase expression by arginine can explain the arginine paradox. Proc Natl Acad Sci U S A 100:4843–4848PubMedCrossRefGoogle Scholar
  85. Li Q, Xiao H, Isobe K (2002) Histone acetyltransferase activities of cAMP-regulated enhancerbinding protein and p300 in tissues of fetal, young, and old mice. J Gerontol A Biol Sci Med Sci 57:B93–B98PubMedGoogle Scholar
  86. Liang CP, Han S, Okamoto H, Carnemolla R, Tabas I, Accili D, Tall AR (2004) Increased CD36 protein as a response to defective insulin signaling in macrophages. J Clin Invest 113:764–773PubMedGoogle Scholar
  87. Lieber MR, Karanjawala ZE (2004) Ageing, repetitive genomes and DNA damage. Nat Rev Mol Cell Biol 5:69–75PubMedCrossRefGoogle Scholar
  88. Liu P, Smith PF, Appleton I, Darlington CL, Bilkey DK (2003a) Regional variations and agerelated changes in nitric oxide synthase and arginase in the sub-regions of the hippocampus. Neuroscience 119:679–687CrossRefGoogle Scholar
  89. Liu P, Smith PF, Appleton I, Darlington CL, Bilkey DK (2003b) Nitric oxide synthase and arginase in the rat hippocampus and the entorhinal, perirhinal, postrhinal, and temporal cortices: regional variations and age-related changes. Hippocampus 13:859–867CrossRefGoogle Scholar
  90. Lloberas J, Celada A (2002) Effect of aging on macrophage function. Exp Gerontol 37:1325–1331PubMedCrossRefGoogle Scholar
  91. Lloberas J, Soler C, Celada A (1999) The key role of PU.1/SPI-1 in B cells, myeloid cells and macrophages. Immunol Today 20:184–189PubMedCrossRefGoogle Scholar
  92. Makhluf HA, Mueller SM, Mizuno S, Glowacki J (2000) Age-related decline in osteoprotegerin expression by human bone marrow cells cultured in three-dimensional collagen sponges. Biochem Biophys Res Commun 268:669–672PubMedCrossRefGoogle Scholar
  93. Mancuso P, McNish RW, Peters-Golden M, Brock TG (2001) Evaluation of phagocytosis and arachidonate metabolism by alveolar macrophages and recruited neutrophils from F344xBN rats of different ages. Mech Ageing Dev 122:1899–1913PubMedCrossRefGoogle Scholar
  94. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumorassociated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555PubMedCrossRefGoogle Scholar
  95. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686PubMedCrossRefGoogle Scholar
  96. Martin GM, Ogburn CE, Colgin LM, Gown AM, Edland SD, Monnat RJ, Jr. (1996) Somatic mutations are frequent and increase with age in human kidney epithelial cells. Hum Mol Genet 5:215–221PubMedCrossRefGoogle Scholar
  97. Matsumoto A (2002) Age-related changes in nuclear receptor coactivator immunoreactivity in motoneurons of the spinal nucleus of the bulbocavernosus of male rats. Brain Res 943:202–205PubMedCrossRefGoogle Scholar
  98. McEachern MJ, Krauskopf A, Blackburn EH (2000) Telomeres and their control. Annu Rev Genet 34:331–358PubMedCrossRefGoogle Scholar
  99. Miller RA (1996) The aging immune system: primer and prospectus. Science 273:70–74PubMedCrossRefGoogle Scholar
  100. Miller SI, Ernst RK, Bader MW (2005) LPS, TLR4 and infectious disease diversity. Nat Rev Microbiol 3:36–46PubMedCrossRefGoogle Scholar
  101. Minshall C, Arkins S, Straza J, Conners J, Dantzer R, Freund GG, Kelley KW (1997) IL-4 and insulin-like growth factor-I inhibit the decline in Bcl-2 and promote the survival of IL-3-deprived myeloid progenitors. J Immunol 159:1225–1232PubMedGoogle Scholar
  102. Morrison SJ, Wandycz AM, Akashi K, Globerson A, Weissman IL (1996) The aging of hematopoietic stem cells. Nat Med 2:1011–1016PubMedCrossRefGoogle Scholar
  103. Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy MM, Mills KD, Patel P, Hsu JT, Hong AL, Ford E, Cheng HL, Kennedy C, Nunez N, Bronson R, Frendewey D, Auerbach W, Valenzuela D, Karow M, Hottiger MO, Hursting S, Barrett JC, Guarente L, Mulligan R, Demple B, Yancopoulos GD, Alt FW (2006) Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124:315–329PubMedCrossRefGoogle Scholar
  104. Mrak RE, Griffin WS (2005) Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging 26:349–354PubMedCrossRefGoogle Scholar
  105. Muzio M, Ni J, Feng P, Dixit VM (1997) IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278:1612–1615PubMedCrossRefGoogle Scholar
  106. Nabarra B, Andrianarison I (1996) Ultrastructural study of thymic microenvironment involution in aging mice. Exp Gerontol 31:489–506PubMedCrossRefGoogle Scholar
  107. Nijnik A, Woodbine L, Marchetti C, Dawson S, Lambe T, Liu C, Rodrigues NP, Crockford TL, Cabuy E, Vindigni A, Enver T, Bell JI, Slijepcevic P, Goodnow CC, Jeggo PA, Cornall RJ (2007) DNA repair is limiting for haematopoietic stem cells during ageing. Nature 447:686–690PubMedCrossRefGoogle Scholar
  108. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318PubMedCrossRefGoogle Scholar
  109. Ogawa K, Funaba M, Chen Y, Tsujimoto M (2006) Activin A functions as a Th2 cytokine in the promotion of the alternative activation of macrophages. J Immunol 177:6787–6794PubMedGoogle Scholar
  110. Ogawa T, Kitagawa M, Hirokawa K (2000) Age-related changes of human bone marrow: a histometric estimation of proliferative cells, apoptotic cells, T cells, B cells and macrophages. Mech Ageing Dev 117:57–68PubMedCrossRefGoogle Scholar
  111. Ogryzko VV, Hirai TH, Russanova VR, Barbie DA, Howard BH (1996) Human fibroblast commitment to a senescence-like state in response to histone deacetylase inhibitors is cell cycle dependent. Mol Cell Biol 16:5210–5218PubMedGoogle Scholar
  112. Olah ME, Caldwell CC (2003) Adenosine receptors and mammalian toll-like receptors: synergism in macrophages. Mol Interv 3:370–374PubMedCrossRefGoogle Scholar
  113. Pawelec G, Solana R (1997) Immunosenescence. Immunol Today 18:514–516PubMedCrossRefGoogle Scholar
  114. Perkins SL, Gibbons R, Kling S, Kahn AJ (1994) Age-related bone loss in mice is associated with an increased osteoclast progenitor pool. Bone 15:65–72PubMedCrossRefGoogle Scholar
  115. Pesce J, Kaviratne M, Ramalingam TR, Thompson RW, Urban JF, Jr., Cheever AW, Young DA, Collins M, Grusby MJ, Wynn TA (2006) The IL-21 receptor augments Th2 effector function and alternative macrophage activation. J Clin Invest 116:2044–2055PubMedCrossRefGoogle Scholar
  116. Pestka S, Krause CD, Walter MR (2004) Interferons, interferon-like cytokines, and their receptors. Immunol Rev 202:8–32PubMedCrossRefGoogle Scholar
  117. Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, DiPietro L, Cline GW, Shulman GI (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300:1140–1142PubMedCrossRefGoogle Scholar
  118. Piette J, Piret B, Bonizzi G, Schoonbroodt S, Merville MP, Legrand-Poels S, Bours V (1997) Multiple redox regulation in NF-kappaB transcription factor activation. Biol Chem 378:1237–1245PubMedGoogle Scholar
  119. Pinhal-Enfield G, Ramanathan M, Hasko G, Vogel SN, Salzman AL, Boons GJ, Leibovich SJ (2003) An angiogenic switch in macrophages involving synergy between Toll-like receptors 2, 4, 7, and 9 and adenosine A(2A) receptors. Am J Pathol 163:711–721PubMedGoogle Scholar
  120. Plackett TP, Boehmer ED, Faunce DE, Kovacs EJ (2004) Aging and innate immune cells. J Leukoc Biol 76:291–299PubMedCrossRefGoogle Scholar
  121. Plowden J, Renshaw-Hoelscher M, Engleman C, Katz J, Sambhara S (2004) Innate immunity in aging: impact on macrophage function. Aging Cell 3:161–167PubMedCrossRefGoogle Scholar
  122. Puddu P, Fantuzzi L, Borghi P, Varano B, Rainaldi G, Guillemard E, Malorni W, Nicaise P, Wolf SF, Belardelli F, Gessani S (1997) IL-12 induces IFN-gamma expression and secretion in mouse peritoneal macrophages. J Immunol 159:3490–3497PubMedGoogle Scholar
  123. Ralfkiaer E, Stein H, Ralfkiaer N, Hou-Jensen K, Mason DY (1985) Normal and neoplastic Langerhans cells: phenotypic comparison with other types of macrophages. Adv Exp Med Biol 186:1009–1015PubMedGoogle Scholar
  124. Ramsey MJ, Moore DH 2nd, Briner JF, Lee DA, Olsen L, Senft JR, Tucker JD (1995) The effects of age and lifestyle factors on the accumulation of cytogenetic damage as measured by chromosome painting. Mutat Res 338:95–106PubMedGoogle Scholar
  125. Reese TA, Liang HE, Tager AM, Luster AD, Van Rooijen N, Voehringer D, Locksley RM (2007) Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature 447:92–96PubMedCrossRefGoogle Scholar
  126. Renshaw M, Rockwell J, Engleman C, Gewirtz A, Katz J, Sambhara S (2002) Cutting edge: impaired Toll-like receptor expression and function in aging. J Immunol 169:4697–4701PubMedGoogle Scholar
  127. Rosmarin AG, Caprio DG, Kirsch DG, Handa H, Simkevich CP (1995) GABP and PU.1 compete for binding, yet cooperate to increase CD18 (beta 2 leukocyte integrin) transcription. J Biol Chem 270:23627–23633PubMedCrossRefGoogle Scholar
  128. Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL (2007) Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447:725–729PubMedCrossRefGoogle Scholar
  129. Sadahira Y, Wada H, Manabe T, Yawata Y (1999) Immunohistochemical assessment of human bone marrow macrophages in hematologic disorders. Pathol Int 49:626–632PubMedCrossRefGoogle Scholar
  130. Samper E, Fernandez P, Eguia R, Martin-Rivera L, Bernad A, Blasco MA, Aracil M (2002) Longterm repopulating ability of telomerase-deficient murine hematopoietic stem cells. Blood 99:2767–2775PubMedCrossRefGoogle Scholar
  131. San Jose I, Garcia-Suarez O, Hannestad J, Cabo R, Gauna L, Represa J, Vega JA (2001) The thymus of the hairless rhino-j (hr/rh-j) mice. J Anat 198:399–406PubMedCrossRefGoogle Scholar
  132. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85PubMedCrossRefGoogle Scholar
  133. Saurwein-Teissl M, Blasko I, Zisterer K, Neuman B, Lang B, Grubeck-Loebenstein B (2000) An imbalance between pro- and anti-inflammatory cytokines, a characteristic feature of old age. Cytokine 12:1160–1161PubMedCrossRefGoogle Scholar
  134. Schroder K, Hertzog PJ, Ravasi T, Hume DA (2004) Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75:163–189PubMedCrossRefGoogle Scholar
  135. Sierra A, Gottfried-Blackmore AC, McEwen BS, Bulloch K (2007) Microglia derived from aging mice exhibit an altered inflammatory profile. Glia 55:412–424PubMedCrossRefGoogle Scholar
  136. Singhal RP, Mays-Hoopes LL, Eichhorn GL (1987) DNA methylation in aging of mice. Mech Ageing Dev 41:199–210PubMedCrossRefGoogle Scholar
  137. Smith LT, Hohaus S, Gonzalez DA, Dziennis SE, Tenen DG (1996) PU.1 (Spi-1) and C/EBP alpha regulate the granulocyte colony-stimulating factor receptor promoter in myeloid cells. Blood 88:1234–1247PubMedGoogle Scholar
  138. Smith P, Dunne DW, Fallon PG (2001) Defective in vivo induction of functional type 2 cytokine responses in aged mice. Eur J Immunol 31:1495–1502PubMedCrossRefGoogle Scholar
  139. Solana R, Mariani E (2000) NK and NK/T cells in human senescence. Vaccine 18:1613–1620PubMedCrossRefGoogle Scholar
  140. Streit WJ (2002) Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40:133–139PubMedCrossRefGoogle Scholar
  141. Streit WJ (2006) Microglial senescence: does the brain’s immune system have an expiration date? Trends Neurosci 29:506–510PubMedCrossRefGoogle Scholar
  142. Sun LQ, Lee DW, Zhang Q, Xiao W, Raabe EH, Meeker A, Miao D, Huso DL, Arceci RJ (2004) Growth retardation and premature aging phenotypes in mice with disruption of the SNF2-like gene, PASG. Genes Dev 18:1035–1046PubMedCrossRefGoogle Scholar
  143. Swift ME, Burns AL, Gray KL, DiPietro LA (2001) Age-related alterations in the inflammatory response to dermal injury. J Invest Dermatol 117:1027–1035PubMedCrossRefGoogle Scholar
  144. Tatar M, Bartke A, Antebi A (2003) The endocrine regulation of aging by insulin-like signals. Science 299:1346–1351PubMedCrossRefGoogle Scholar
  145. Thiers BH, Maize JC, Spicer SS, Cantor AB (1984) The effect of aging and chronic sun exposure on human Langerhans cell populations. J Invest Dermatol 82:223–226PubMedCrossRefGoogle Scholar
  146. Thomas DR (2001) Age-related changes in wound healing. Drugs Aging 18:607–620PubMedCrossRefGoogle Scholar
  147. Tucker JD, Spruill MD, Ramsey MJ, Director AD, Nath J (1999) Frequency of spontaneous chromosome aberrations in mice: effects of age. Mutat Res 425:135–141PubMedGoogle Scholar
  148. Vaday GG, Franitza S, Schor H, Hecht I, Brill A, Cahalon L, Hershkoviz R, Lider O (2001) Combinatorial signals by inflammatory cytokines and chemokines mediate leukocyte interactions with extracellular matrix. J Leukoc Biol 69:885–892PubMedGoogle Scholar
  149. Valledor AF, Borras FE, Cullell-Young M, Celada A (1998) Transcription factors that regulate monocyte/macrophage differentiation. J Leukoc Biol 63:405–417PubMedGoogle Scholar
  150. Van Zant G, Liang Y (2003) The role of stem cells in aging. Exp Hematol 31:659–672PubMedCrossRefGoogle Scholar
  151. Van Zant G, de Haan G, Rich IN (1997) Alternatives to stem cell renewal from a developmental viewpoint. Exp Hematol 25:187–192PubMedGoogle Scholar
  152. Varas A, Sacedon R, Hernandez-Lopez C, Jimenez E, Garcia-Ceca J, Arias-Diaz J, Zapata AG, Vicente A (2003) Age-dependent changes in thymic macrophages and dendritic cells. Microsc Res Tech 62:501–507PubMedCrossRefGoogle Scholar
  153. Vaziri H, Dragowska W, Allsopp RC, Thomas TE, Harley CB, Lansdorp PM (1994) Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci U S A 91:9857–9860PubMedCrossRefGoogle Scholar
  154. Vaziri H, Schachter F, Uchida I, Wei L, Zhu X, Effros R, Cohen D, Harley CB (1993) Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am J Hum Genet 52:661–667PubMedGoogle Scholar
  155. Vertino PM, Issa JP, Pereira-Smith OM, Baylin SB (1994) Stabilization of DNA methyltransferase levels and CpG island hypermethylation precede SV40-induced immortalization of human fibroblasts. Cell Growth Differ 5:1395–1402PubMedGoogle Scholar
  156. Videla LA, Tapia G, Fernandez V (2001) Influence of aging on Kupffer cell respiratory activity in relation to particle phagocytosis and oxidative stress parameters in mouse liver. Redox Rep 6:155–159PubMedCrossRefGoogle Scholar
  157. Villanueva JL, Solana R, Alonso MC, Pena J (1990) Changes in the expression of HLA-class II antigens on peripheral blood monocytes from aged humans. Dis Markers 8:85–91PubMedGoogle Scholar
  158. Villeponteau B (1997) The heterochromatin loss model of aging. Exp Gerontol 32:383–394PubMedCrossRefGoogle Scholar
  159. Wallace PK, Eisenstein TK, Meissler JJ Jr, Morahan PS (1995) Decreases in macrophage mediated antitumor activity with aging. Mech Ageing Dev 77:169–184PubMedCrossRefGoogle Scholar
  160. Wang B, Amerio P, Sauder DN (1999) Role of cytokines in epidermal Langerhans cell migration. J Leukoc Biol 66:33–39PubMedGoogle Scholar
  161. Wang CQ, Udupa KB, Xiao H, Lipschitz DA (1995) Effect of age on marrow macrophage number and function. Aging (Milano) 7:379–384Google Scholar
  162. Weng N (2001) Interplay between telomere length and telomerase in human leukocyte differentiation and aging. J Leukoc Biol 70:861–867PubMedGoogle Scholar
  163. Xaus J, Cardo M, Valledor AF, Soler C, Lloberas J, Celada A (1999) Interferon gamma induces the expression of p21waf-1 and arrests macrophage cell cycle, preventing induction of apoptosis. Immunity 11:103–113PubMedCrossRefGoogle Scholar
  164. Xaus J, Besalduch N, Comalada M, Marcoval J, Pujol R, Mana J, Celada A (2003) High expression of p21 Waf1 in sarcoid granulomas: a putative role for long-lasting inflammation. J Leukoc Biol 74:295–301PubMedCrossRefGoogle Scholar
  165. Xaus J, Comalada M, Valledor AF, Lloberas J, Lopez-Soriano F, Argiles JM, Bogdan C, Celada A (2000) LPS induces apoptosis in macrophages mostly through the autocrine production of TNF-alpha. Blood 95:3823–3831PubMedGoogle Scholar
  166. Yamazaki S, Yokozeki H, Satoh T, Katayama I, Nishioka K (1998) TNF-alpha, RANTES, and MCP-1 are major chemoattractants of murine Langerhans cells to the regional lymph nodes. Exp Dermatol 7:35–41PubMedCrossRefGoogle Scholar
  167. Yeramian A, Martin L, Arpa L, Bertran J, Soler C, McLeod C, Modolell M, Palacin M, Lloberas J, Celada A (2006a) Macrophages require distinct arginine catabolism and transport systems for proliferation and for activation. Eur J Immunol 36:1516–1526CrossRefGoogle Scholar
  168. Yeramian A, Martin L, Serrat N, Arpa L, Soler C, Bertran J, McLeod C, Palacin M, Modolell M, Lloberas J, Celada A (2006b) Arginine transport via cationic amino acid transporter 2 plays a critical regulatory role in classical or alternative activation of macrophages. J Immunol 176:5918–5924Google Scholar
  169. Yoshimoto T, Wang CR, Yoneto T, Waki S, Sunaga S, Komagata Y, Mitsuyama M, Miyazaki J, Nariuchi H (1998) Reduced T helper 1 responses in IL-12 p40 transgenic mice. J Immunol 160:588–594PubMedGoogle Scholar
  170. Zeira M, Gallily R (1990) Effect of strain and age on in vitro proliferation of murine thymusderived macrophages. Thymus 15:1–13PubMedGoogle Scholar
  171. Zheng B, Han S, Takahashi Y, Kelsoe G (1997) Immunosenescence and germinal center reaction. Immunol Rev 160:63–77PubMedCrossRefGoogle Scholar
  172. Zimmermann S, Glaser S, Ketteler R, Waller CF, Klingmuller U, Martens UM (2004) Effects of telomerase modulation in human hematopoietic progenitor cells. Stem Cells 22:741–749PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Carlos Sebastián
    • 1
  • Jorge Lloberas
    • 1
  • Antonio Celada
    • 1
  1. 1.Institute for Research in BiomedicineUniversity of BarcelonaBarcelonaSpain

Personalised recommendations