Skip to main content

Predicting protein 3D structures from the amino acid sequence still remains as an unsolved problem after five decades of efforts. If the target protein has a homologue already solved, the task is relatively easy and high-resolution models can be built by copying the framework of the solved structure. However, such a modelling procedure does not help answer the question of how and why a protein adopts its specific structure. If structure homologues (occasionally analogues) do not exist, or exist but cannot be identified, models have to be constructed from scratch. This procedure, called ab initio modelling, is essential for a complete solution to the protein structure prediction problem; it can also help us understand the physicochemical principle of how proteins fold in nature. Currently, the accuracy of ab initio modelling is low and the success is limited to small proteins (<100 residues). In this chapter, we give a review on the field of ab initio modelling. Focus will be put on three key factors of the modelling algorithms: energy function, conformational search, and model selection. Progresses and advances of a variety of algorithms will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bairoch A, Apweiler R, Wu CH, et al. (2005) The Universal Protein Resource (UniProt). Nucleic Acids Res 33(Database issue):D154–159

    PubMed  CAS  Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF, et al. (1981) Interaction models for water in relation to protein hydration. Intermolecular forces. Reidel, Dordrecht, The Netherlands

    Google Scholar 

  • Berg BA, Neuhaus T (1992) Multicanonical ensemble: a new approach to simulate first-order phase transitions. Phys Rev Lett 68(1):9–12

    PubMed  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, et al. (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    PubMed  CAS  Google Scholar 

  • Berrera M, Molinari H, Fogolari F (2003) Amino acid empirical contact energy definitions for fold recognition in the space of contact maps. BMC Bioinformatics 4:8

    PubMed  Google Scholar 

  • Bowie JU, Eisenberg D (1994) An evolutionary approach to folding small alpha-helical proteins that uses sequence information and an empirical guiding fitness function. Proc Natl Acad Sci USA 91(10):4436–4440

    PubMed  CAS  Google Scholar 

  • Bradley P, Misura KM, Baker D (2005) Toward high-resolution de novo structure prediction for small proteins. Science 309(5742):1868–1871

    PubMed  CAS  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, et al. (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4(2):187–217

    CAS  Google Scholar 

  • Bryant SH, Lawrence CE (1993) An empirical energy function for threading protein sequence through the folding motif. Proteins 16(1):92–112

    PubMed  CAS  Google Scholar 

  • Case DA, Pearlman DA, Caldwell JA, et al. (1997) AMBER 5.0, University of California,San Francisco, CA

    Google Scholar 

  • Chen J, Brooks CL (2007) Can molecular dynamics simulations provide high-resolution refinement of protein structure? Proteins 67(4):922–930

    PubMed  CAS  Google Scholar 

  • Cheng J, Baldi P (2006) A machine learning information retrieval approach to protein fold recognition. Bioinformatics 22(12):1456–1463

    PubMed  CAS  Google Scholar 

  • Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2(9):1511–1519

    PubMed  CAS  Google Scholar 

  • Cornell WD, Cieplak P, Bayly CI, et al. (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    CAS  Google Scholar 

  • Das R, Qian B, Raman S, et al. (2007) Structure prediction for CASP7 targets using extensive all-atom refinement with Rosetta@home. Proteins 69(S8):118–128

    PubMed  CAS  Google Scholar 

  • Dominy BN, Brooks CL (2002) Identifying native-like protein structures using physics-based potentials. J Comput Chem 23(1):147–160

    PubMed  CAS  Google Scholar 

  • Duan Y, Kollman PA (1998) Pathways to a protein folding intermediate observed in a 1-microsec-ond simulation in aqueous solution. Science 282(5389):740–744

    PubMed  CAS  Google Scholar 

  • Eisenberg D, Luthy R, Bowie JU (1997) VERIFY3D: assessment of protein models with three-dimensional profiles. Method Enzymol 277:396–404

    CAS  Google Scholar 

  • Fan H, Mark AE (2004) Refinement of homology-based protein structures by molecular dynamics simulation techniques. Protein Sci 13(1):211–220

    PubMed  CAS  Google Scholar 

  • Feig M, Brooks CL (2002) Evaluating CASP4 predictions with physical energy functions.Proteins 49(2):232–245

    PubMed  CAS  Google Scholar 

  • Felts AK, Gallicchio E, Wallqvist A, et al. (2002) Distinguishing native conformations of proteins from decoys with an effective free energy estimator based on the OPLS all-atom force field and the Surface Generalized Born solvent model. Proteins 48(2):404–422

    PubMed  CAS  Google Scholar 

  • Fischer D (2006) Servers for protein structure prediction. Curr Opin Struct Biol 16(2):178–182

    PubMed  CAS  Google Scholar 

  • Fujitsuka Y, Chikenji G, Takada S (2006) SimFold energy function for de novo protein structure prediction: consensus with Rosetta. Proteins 62(2):381–398

    PubMed  CAS  Google Scholar 

  • Ginalski K, Elofsson A, Fischer D, et al. (2003a) 3D-Jury: a simple approach to improve protein structure predictions. Bioinformatics 19(8):1015–1018

    CAS  Google Scholar 

  • Ginalski K, Pas J, Wyrwicz LS, et al. (2003b) ORFeus: detection of distant homology using sequence profiles and predicted secondary structure. Nucleic Acids Res 31(13):3804–3807

    CAS  Google Scholar 

  • Hagler A, Euler E, Lifson S (1974) Energy functions for peptides and proteins I. Derivation of a consistent force field including the hydrogen bond from amide crystals. J Am Chem Soc 96:5319–5327

    PubMed  CAS  Google Scholar 

  • Helles G (2008) A comparative study of the reported performance of ab initio protein structure prediction algorithms. J R Soc Interface 5(21):387–396

    PubMed  CAS  Google Scholar 

  • Hendlich M, Lackner P, Weitckus S, et al. (1990) Identification of native protein folds amongst a large number of incorrect models. The calculation of low energy conformations from potentials of mean force. J Mol Biol 216(1):167–180

    PubMed  CAS  Google Scholar 

  • Hsieh MJ, Luo R (2004) Physical scoring function based on AMBER force field and Poisson-Boltzmann implicit solvent for protein structure prediction. Proteins 56(3):475–486

    PubMed  CAS  Google Scholar 

  • Im W, Lee MS, Brooks CL (2003) Generalized born model with a simple smoothing function. J Comput Chem 24(14):1691–1702

    PubMed  CAS  Google Scholar 

  • Jaroszewski L, Rychlewski L, Li Z, et al. (2005) FFAS03: a server for profile—profile sequence alignments. Nucleic Acids Res 33(Web Server issue):W284–288

    PubMed  CAS  Google Scholar 

  • Jauch R, Yeo HC, Kolatkar PR, et al. (2007) Assessment of CASP7 structure predictions for template free targets. Proteins 69(Suppl 8):57–67

    PubMed  CAS  Google Scholar 

  • Jonassen I, Klose D, Taylor WR (2006) Protein model refinement using structural fragment tessellation. Comput Biol Chem 30(5):360–366

    PubMed  CAS  Google Scholar 

  • Jones DT (1999) GenTHREADER: an efficient and reliable protein fold recognition method for genomic sequences. J Mol Biol 287(4):797–815

    PubMed  CAS  Google Scholar 

  • Jorgensen WL, Tirado-Rives J (1988) The OPLS potential functions for proteins. Energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc (110):1657–1666

    CAS  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, et al. (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    CAS  Google Scholar 

  • Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS All-Atom Force Field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    CAS  Google Scholar 

  • Kaminski GA, Friesner RA, Tirado-Rives J, et al. (2001) Evaluation and Reparametrization of the OPLS-AA Force Field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105:6474–6487

    CAS  Google Scholar 

  • Karplus K, Barrett C, Hughey R (1998) Hidden Markov models for detecting remote protein homologies. Bioinformatics 14:846–856

    PubMed  CAS  Google Scholar 

  • Kihara D, Lu H, Kolinski A, et al. (2001) TOUCHSTONE: an ab initio protein structure prediction method that uses threading-based tertiary restraints. Proc Natl Acad Sci USA 98(18):10125–10130

    PubMed  CAS  Google Scholar 

  • Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    PubMed  Google Scholar 

  • Klepeis JL, Floudas CA (2003) ASTRO-FOLD: a combinatorial and global optimization framework for Ab initio prediction of three-dimensional structures of proteins from the amino acid sequence. Biophys J 85(4):2119–2146

    PubMed  CAS  Google Scholar 

  • Klepeis JL, Wei Y, Hecht MH, et al. (2005) Ab initio prediction of the three-dimensional structure of a de novo designed protein: a double-blind case study. Proteins 58(3):560–570

    PubMed  CAS  Google Scholar 

  • Kocher JP, Rooman MJ, Wodak SJ (1994) Factors influencing the ability of knowledge-based potentials to identify native sequence-structure matches. J Mol Biol 235(5):1598–1613

    PubMed  CAS  Google Scholar 

  • Lazaridis T, Karplus M (1999a) Discrimination of the native from misfolded protein models with an energy function including implicit solvation. J Mol Biol 288(3):477–487

    CAS  Google Scholar 

  • Lazaridis T, Karplus M (1999b) Effective energy function for proteins in solution. Proteins 35(2):133–152

    CAS  Google Scholar 

  • Lee J (1993) New Monte Carlo algorithm: entropic sampling. Phys Rev Lett 71(2):211–214

    PubMed  CAS  Google Scholar 

  • Lee J, Scheraga HA, Rackovsky S (1998) Conformational analysis of the 20-residue membrane-bound portion of melittin by conformational space annealing. Biopolymers 46(2):103–116

    PubMed  CAS  Google Scholar 

  • Lee J, Kim SY, Joo K, et al. (2004) Prediction of protein tertiary structure using PROFESY, a novel method based on fragment assembly and conformational space annealing. Proteins 56(4):704–714

    PubMed  CAS  Google Scholar 

  • Lee MC, Duan Y (2004) Distinguish protein decoys by using a scoring function based on a new AMBER force field, short molecular dynamics simulations, and the generalized born solvent model. Proteins 55(3):620–634

    PubMed  CAS  Google Scholar 

  • Lee MR, Tsai J, Baker D, et al. (2001) Molecular dynamics in the endgame of protein structure prediction. J Mol Biol 313(2):417–430

    PubMed  CAS  Google Scholar 

  • Levitt M, Hirshberg M, Sharon R, et al. (1995) Potential-energy function and parameters for simulations of the molecular-dynamics of proteins and nucleic-acids in solution. Comput Phys Commun 91(1–3):215–231

    CAS  Google Scholar 

  • Li Z, Scheraga HA (1987) Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc Natl Acad Sci USA 84(19):6611–6615

    PubMed  CAS  Google Scholar 

  • Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317

    CAS  Google Scholar 

  • Liwo A, Pincus MR, Wawak RJ, et al. (1993) Calculation of protein backbone geometry from alpha-carbon coordinates based on peptide-group dipole alignment. Protein Sci 2(10):1697–1714

    PubMed  CAS  Google Scholar 

  • Liwo A, Lee J, Ripoll DR, et al. (1999) Protein structure prediction by global optimization of a potential energy function. Proc Natl Acad Sci USA 96(10):5482–5485

    PubMed  CAS  Google Scholar 

  • Liwo A, Khalili M, Scheraga HA (2005) Ab initio simulations of protein-folding pathways by molecular dynamics with the united-residue model of polypeptide chains. Proc Natl Acad Sci USA 102(7):2362–2367

    PubMed  CAS  Google Scholar 

  • Lu H, Skolnick J (2001) A distance-dependent atomic knowledge-based potential for improved protein structure selection. Proteins 44(3):223–232

    PubMed  CAS  Google Scholar 

  • Luthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356(6364):83–85

    PubMed  CAS  Google Scholar 

  • MacKerell Jr. AD, Bashford D, Bellott M, et al. (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102 (18):3586–3616

    CAS  Google Scholar 

  • McGuffin LJ (2007) Benchmarking consensus model quality assessment for protein fold recognition. BMC Bioinformatics 8:345

    PubMed  Google Scholar 

  • Melo F, Sanchez R, Sali A (2002) Statistical potentials for fold assessment. Protein Sci 11(2):430–448

    PubMed  CAS  Google Scholar 

  • Moult J, Fidelis K, Zemla A, et al. (2001) Critical assessment of methods of protein structure prediction (CASP): round I V. Proteins(Suppl 5):2–7

    PubMed  Google Scholar 

  • Nemethy G, Gibson KD, Palmer KA, et al. (1992) Energy parameters in polypeptides. 10.Improved geometric parameters and nonbonded interactions for use in the ECEPP/3 algorithm,with application to proline-containing peptides. J Phys Chem B 96: 6472–6484

    CAS  Google Scholar 

  • Neria E, Fischer S, Karplus M (1996) Simulation of activation free energies in molecular systems.J Chem Phys 105(5):1902–1921

    CAS  Google Scholar 

  • Nilges M, Brunger AT (1991) Automated modeling of coiled coils: application to the GCN4 dimerization region. Protein Eng 4(6):649–659

    PubMed  CAS  Google Scholar 

  • Oldziej S, Czaplewski C, Liwo A, et al. (2005) Physics-based protein-structure prediction using a hierarchical protocol based on the UNRES force field: assessment in two blind tests. Proc Natl Acad Sci USA 102(21):7547–7552

    PubMed  CAS  Google Scholar 

  • Park B, Levitt M (1996) Energy functions that discriminate X-ray and near native folds from well-constructed decoys. J Mol Biol 258(2):367–392

    PubMed  CAS  Google Scholar 

  • Petrey D, Honig B (2000) Free energy determinants of tertiary structure and the evaluation of protein models. Protein Sci 9(11):2181–2191

    PubMed  CAS  Google Scholar 

  • Pettitt CS, McGuffin LJ, Jones DT (2005) Improving sequence-based fold recognition by using 3D model quality assessment. Bioinformatics 21(17):3509–3515

    PubMed  CAS  Google Scholar 

  • Pieper U, Eswar N, Davis FP, et al. (2006) MODBASE: a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res 34(Database issue):D291–295

    PubMed  CAS  Google Scholar 

  • Samudrala R, Moult J (1998) An all-atom distance-dependent conditional probability discriminatory function for protein structure prediction. J Mol Biol 275(5):895–916

    PubMed  CAS  Google Scholar 

  • Shen MY, Sali A (2006) Statistical potential for assessment and prediction of protein structures.Protein Sci 15(11):2507–2524

    PubMed  CAS  Google Scholar 

  • Shi J, Blundell TL, Mizuguchi K (2001) FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol 310(1):243–257

    PubMed  CAS  Google Scholar 

  • Shortle D, Simons KT, Baker D (1998) Clustering of low-energy conformations near the native structures of small proteins. Proc Natl Acad Sci USA 95(19):11158–11162

    PubMed  CAS  Google Scholar 

  • Simons KT, Kooperberg C, Huang E, et al. (1997) Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol 268(1):209–225

    PubMed  CAS  Google Scholar 

  • Sippl MJ (1990) Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins. J Mol Biol 213(4):859–883

    PubMed  CAS  Google Scholar 

  • Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17(4):355–362

    PubMed  CAS  Google Scholar 

  • Skolnick J (2006) In quest of an empirical potential for protein structure prediction. Curr Opin Struct Biol 16(2):166–171

    PubMed  CAS  Google Scholar 

  • Skolnick J, Jaroszewski L, Kolinski A, et al. (1997) Derivation and testing of pair potentials for protein folding. When is the quasichemical approximation correct? Protein Science 6:676–688

    PubMed  CAS  Google Scholar 

  • Skolnick J, Zhang Y, Arakaki AK, et al. (2003) TOUCHSTONE: a unified approach to protein structure prediction. Proteins 53(Suppl 6):469–479

    PubMed  CAS  Google Scholar 

  • Skolnick J, Kihara D, Zhang Y (2004) Development and large scale benchmark testing of the PROSPECTOR 3.0 threading algorithm. Protein 56:502–518

    CAS  Google Scholar 

  • Soding J (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21(7):951–960

    PubMed  Google Scholar 

  • Sorin EJ, Pande VS (2005) Exploring the helix-coil transition via all-atom equilibrium ensemble simulations. Biophys J 88(4):2472–2493

    PubMed  CAS  Google Scholar 

  • Summa CM, Levitt M (2007) Near-native structure refinement using in vacuo energy minimization. Proc Natl Acad Sci USA 104(9):3177–3182

    PubMed  CAS  Google Scholar 

  • Taylor WR, Bartlett GJ, Chelliah V, et al. (2008) Prediction of protein structure from ideal forms.Proteins 70(4):1610–1619

    PubMed  CAS  Google Scholar 

  • Thomas PD, Dill KA (1996) Statistical potentials extracted from protein structures: how accurate are they? J Mol Biol 257(2):457–469

    PubMed  CAS  Google Scholar 

  • Tosatto SC (2005) The victor/FRST function for model quality estimation. J Comput Biol 12(10):1316–1327

    PubMed  CAS  Google Scholar 

  • Tsai J, Bonneau R, Morozov AV, et al. (2003) An improved protein decoy set for testing energy functions for protein structure prediction. Proteins 53(1):76–87

    PubMed  CAS  Google Scholar 

  • van Gunsteren WF, Billeter SR, Eising AA, et al. (1996) Biomolecular simulation: the GROMOS96 manual and user guide. VDF Hochschulverlag AG an der ETH, Zurich

    Google Scholar 

  • Vieth M, Kolinski A, Brooks CL, et al. (1994) Prediction of the folding pathways and structure of the GCN4 leucine zipper. J Mol Biol 237(4):361–367

    PubMed  CAS  Google Scholar 

  • Wallner B, Elofsson A (2003) Can correct protein models be identified? Protein Sci 12(5):1073–1086

    PubMed  CAS  Google Scholar 

  • Wallner B, Elofsson A (2007) Prediction of global and local model quality in CASP7 using Pcons and ProQ. Proteins 69(S8):184–193

    PubMed  CAS  Google Scholar 

  • Wang JM, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? JComput Chem 21(12):1049–1074

    CAS  Google Scholar 

  • Wang K, Fain B, Levit M, et al. (2004) Improved protein structure selection using decoy-dependent discriminatory functions. BMC Struct Biol 4(8)

    Google Scholar 

  • Weiner SJ, Kollman PA, Case DA, et al. (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 106: 765–784

    CAS  Google Scholar 

  • Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(Web Server issue):W407–410

    PubMed  Google Scholar 

  • Wroblewska L, Skolnick J (2007) Can a physics-based, all-atom potential find a protein's native structure among misfolded structures? I. Large scale AMBER benchmarking. J Comput Chem 28(12):2059–2066

    PubMed  CAS  Google Scholar 

  • Wu S, Zhang Y (2007) LOMETS: a local meta-threading-server for protein structure prediction.Nucleic Acids Res 35(10):3375–3382

    PubMed  CAS  Google Scholar 

  • Wu S, Zhang Y (2008) MUSTER: improving protein sequence profile-profile alignments by using multiple sources of structure information. Proteins 72(2):547–556

    PubMed  CAS  Google Scholar 

  • Wu S, Skolnick J, Zhang Y (2007) Ab initio modeling of small proteins by iterative TASSER simulations. BMC Biol 5:17

    PubMed  Google Scholar 

  • Zagrovic B, Snow CD, Shirts MR, et al. (2002) Simulation of folding of a small alpha-helical protein in atomistic detail using worldwide-distributed computing. J Mol Biol 323(5):927–937

    PubMed  CAS  Google Scholar 

  • Zhang C, Kim SH (2000) Environment-dependent residue contact energies for proteins. Proc Natl Acad Sci USA 97(6):2550–2555

    PubMed  CAS  Google Scholar 

  • Zhang C, Liu S, Zhou H, et al. (2004) An accurate, residue-level, pair potential of mean force for folding and binding based on the distance-scaled, ideal-gas reference state. Protein Sci 13(2):400–411

    PubMed  CAS  Google Scholar 

  • Zhang Y (2007) Template-based modeling and free modeling by I-TASSER in CASP7. Proteins 69(Suppl 8):108–117

    PubMed  CAS  Google Scholar 

  • Zhang Y (2008) Progress and challenges in protein structure prediction. Curr Opin Struct Biol 18(3):342–348

    PubMed  CAS  Google Scholar 

  • Zhang Y, Skolnick J (2004a) Automated structure prediction of weakly homologous proteins on a genomic scale. Proc Natl Acad Sci U S A 101:7594–7599

    CAS  Google Scholar 

  • Zhang Y, Skolnick J (2004b) Scoring function for automated assessment of protein structure template quality. Proteins 57:702–710

    CAS  Google Scholar 

  • Zhang Y, Skolnick J (2004c) SPICKER: a clustering approach to identify near-native protein folds. J Comput Chem 25(6):865–871

    CAS  Google Scholar 

  • Zhang Y, Skolnick J (2005a) The protein structure prediction problem could be solved using the current PDB library. Proc Natl Acad Sci USA 102:1029–1034

    CAS  Google Scholar 

  • Zhang Y, Skolnick J (2005b) TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 33(7):2302–2309

    CAS  Google Scholar 

  • Zhang Y, Kihara D, Skolnick J (2002) Local energy landscape flattening: parallel hyperbolic Monte Carlo sampling of protein folding. Proteins 48(2):192–201

    PubMed  CAS  Google Scholar 

  • Zhang Y, Kolinski A, Skolnick J (2003) TOUCHSTONE II: a new approach to ab initio protein structure prediction. Biophys J 85(2):1145–1164

    PubMed  CAS  Google Scholar 

  • Zhang Y, Hubner I, Arakaki A, et al. (2006) On the origin and completeness of highly likely single domain protein structures. Proc Natl Acad Sci USA 103:2605–2610

    PubMed  CAS  Google Scholar 

  • Zhou H, Skolnick J (2007) Ab initio protein structure prediction using chunk-TASSER. Biophys J 93(5):1510–1518

    PubMed  CAS  Google Scholar 

  • Zhou H, Zhou Y (2002) Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci 11(11):2714–2726

    PubMed  CAS  Google Scholar 

  • Zhou H, Zhou Y (2005) Fold recognition by combining sequence profiles derived from evolution and from depth-dependent structural alignment of fragments. Proteins 58(2):321–328

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Lee, J., Wu, S., Zhang, Y. (2009). Ab Initio Protein Structure Prediction. In: Rigden, D.J. (eds) From Protein Structure to Function with Bioinformatics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9058-5_1

Download citation

Publish with us

Policies and ethics