Abstract
This chapter departs from previous handbooks’ chapters on language in science education, such as those written by Sutton (1998) and Carlsen (2007), in that it introduces a research program that specifically addresses the relationship between language and modeling processes in science education. The field will be reviewed taking into account the science education research work from Brazilian, French, Spanish, and British schools and other contributions. This review will consider the perspectives used to understand and depict language, models and modeling in science education. In addition, examples will be offered from the research work that point to the ways language and modeling are related in the science classroom. The international handbook (Fraser and Tobin 1998) contains a chapter on models and modeling in science education (Gilbert and Boutler 1998) that was not included in the most recent handbook, published in 2007. We would like to revive this perspective and propose a model-based view of science education in which language is central in science teaching and learning processes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barth, B. (1987). L’apprentissage de l’abstraction. Paris: Retz.
Buty, C., & Mortimer, E. (2008). Dialogic/authoritative discourse and modelling in a high school teaching sequence on optics. International Journal of Science Education, 30, 1635–1660.
Carlsen, W. S. (2007). Language and science learning. In S. Abell & N. Lederman (Eds.), Handbook of research on science education (pp. 57–74). Mahwah, NJ: Lawrence Erlbaum Associates.
Cartwright, N. (1999). The dappled world: A study of the boundaries of sciences. Cambridge, UK: Cambridge University Press.
Clement, J. (1983). A conceptual model discussed by Galileo and used intuitively by physics students. In D. Gentner & A. L. Stevens (Eds.), Mental models (pp. 325–340). Hillsdale, NJ: Lawrence Erlbaum Associates.
Develaki, M. (2007). The model-based view of scientific theories and the structuring of school science programmes. Science & Education, 16, 725–749.
Duranti, A., & Goodwin, C. (2000). Rethinking context. Language as an interactive phenomenon. New York: Cambridge University Press.
Fourez, G. (2002). Les sciences dans l’enseignement secondaire. Didaskalia, 21, 107–122.
Fraser, B. J., & Tobin, K. (Eds.). (1998). International handbook of science education. Dordrecht, The Netherlands: Kluwer Academic Publishers.
Galagovsky, L. R., & Adúriz-Bravo, A. (2001). Modelos y analogías en la enseñanza de las ciencias naturales. El concepto de modelo didáctico analógico. Enseñanza de las Ciencias, 19, 231–242.
Giere, R. (1988). Explaining science: A cognitive approach. Chicago: University of Chicago Press.
Gilbert, J. K., & Boutler, C. J. (1998). Learning science through models and modeling. In B. J. Fraser & K. Tobin (Eds.), International handbook of science education (pp. 53–66). Dordrecht, The Netherlands: Kluwer Academic Publishers.
Givry, D., & Roth, W.-M. (2006). Toward a new conception of conceptions: Interplay of talk, gestures, and structures in settings. Journal of Research in Science Teaching, 43, 1086–1109.
Gómez, A., Sanmartí, N., & Pujol, R. M. (2007). Fundamentación teórica y diseño de una unidad didáctica para la enseñanza del modelo ser vivo en la escuela primaria. Enseñanza de las Ciencias, 25, 325–340.
Greca, I. M., & Moreira, M. A. (2000). Mental models, conceptual models, and modelling. International Journal of Science Education, 22, 1–11.
Gutiérrez, R., & Ogborn, J. (1992). A causal framework for analyzing alternative conceptions. International Journal of Science Education, 14, 201–220.
Halliday, M. A. K. (1978). Language as a social semiotics: The social interpretation of language and meaning. London: Edward Arnold.
Halliday, M. A. K. (1985). An introduction to functional grammar. London: Edward Arnold.
Halloun, I. (2007). Schematic concepts for schematic models of the real world: The Newtonian concept of force. Science & Education, 16, 653–697.
Harrison, A., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22, 1011–1026.
Hart, C. (2007). Models in physics, models for physics learning, and why the distinction may matter in the case of electric circuits. Research in Science Education, 38, 529–544.
Henze, I., vanDriel, J., & Verloop, N. (2007). Science teachers’ knowledge about teaching models and modelling in the context of a new syllabus on public understanding of science. Research in Science Education, 37, 99–122.
Izquierdo, M., Espinet, M., Bonil, J., & Pujol, R. M. (2004). Ciencia escolar y complejidad. Investigación en la Escuela, 53, 21–29.
Izquierdo, M., Márquez, C., & Gouvea, G. (2008). A proposal for textbooks analysis: Rhetorical structures. Science Education International, 19, 209–218.
Izquierdo, M., Sanmartí, N., & Espinet, M. (1999). Fundamentación y diseño de las prácticas escolares de ciencias experimental. Enseñanza de las Ciencias, 17, 45–59.
Izquierdo-Aymerich, M., & Adúriz-Bravo, A. (2003). Epistemological foundations of school science. Science & Education, 12, 27–43.
Johnson-Laird, P. (1983). Mental models. Cambridge, MA: Harvard University Press.
Justi, R., & Gilbert, J. (2003). Teachers’ views on the nature of models. International Journal of Science Education, 25, 1369–1386.
Koponen, I. T. (2007). Models and modelling in physics education: A critical reanalysis of philosophical underpinnings and suggestions for revisions. Science & Education, 16, 751–773.
Kress, G. R., Jewitt, C., Ogborn, J., & Tsatsarelis, C. (2001). Multimodal science teaching and learning: The rhetoric of science classroom. London/New York: Continuum.
Kuhn, T. S. (1965). The structure of scientific revolutions. Chicago: University of Chicago Press.
Leach, J., & Scott, P. (2003). Individual and sociocultural views of learning in science education. Science & Education, 12, 91–113.
Lemke, J. L. (1993). Talking science: Language, learning and values. Norwood, NJ: Ablex.
Martins, I. (2001). Explicações, representações visuais e retórica na sala de aula de ciências. In E. F. Mortimer & A. L. Smolka (Eds.), Linguagem, cultura e cognição. Reflexões para o ensino e a sala de aula (pp. 139–151). Belo Horizonte, Brasil: Autentica.
Márquez, C., Izquierdo, M., & Espinet, M. (2006). Multimodal science teacher’s discourse in modeling the water cycle. Science Education, 90, 202–226.
Moreira, M. A. (2001). Modelos mentais. In E. F. Mortimer & A. L. Smolka (Eds.), Linguagem, cultura e cognição. Reflexões para o ensino e a sala de aula (pp. 189–221). Belo Horizonte, Brasil: Autentica.
Ogborn, J., Kress, G. R., Martins, I., & McGuillicuddy, K. (1996). Explaining science in the classroom. Buckingham, UK: Open University Press.
Oliva, J. M., Aragón, M. M., & Mateo, J. (2003). Un estudio sobre el papel de las analogías en la construcción del modelo cinético-molecular de la materia. Enseñanza de las Ciencias, 21, 429–444.
Orange-Ravachol, D., & Triquet, E. (2007). Sciences et récits, des rapports problématiques. Aster, 44, 7–22.
Roth, W. M., & Lawless, D. (2002). Scientific investigations, metaphorical gestures, and the emergence of abstract scientific concepts. Learning and Instruction, 12, 285–304.
Santini, J. (2007). Jeux épistémiques et modélisation en clase ordinaire: les séismes aux tours moyen. Didaskalia, 31, 47–83.
Selley, N. (2000) Students’ spontaneous use of a particulate model for dissolution. Research in Science Education, 30, 389–402.
Sensevy, G., & Santini, J. (2006). Modelisation: Un approache epistemologique. Aster, 43, 163–188.
Sensevy, G., Tiberghien, A., Santini, J., Laubé, S., & Griggs, P. (2008). An epistemological approach to modeling: Cases studies and implications for science teaching. Science Education, 92, 424–446.
Shepardson, D. P., Wee, B., Priddy, M., & Harbor, J. (2007). Students’ mental models of the environment. Journal of Research in Science Teaching, 44, 327–348.
Silva, C. C. (2007). The role of models and analogies in the electromagnetic theory: A historical case study. Science & Education, 16, 835–848.
Spiliotopoulou, V. (2007). Models of the universe: Children’s experiences and evidence from the history of science. Science & Education, 16, 801–833.
Sutton, C. (1996). Beliefs about science and beliefs about language. International Journal of Science Education, 18, 1–18.
Sutton, C. (1998). New perspectives on language in science. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education (pp. 27–38). Dordrecht, The Netherlands: Kluwer Academic Publishers.
Viennot, L. (2007). La physique dans la culture scientifique: entre raisonnement, récit et rituels. Aster, 44, 23–40.
Wenger, E. (1998). Communities of practice: Learning, meaning and identity. Cambridge, UK: Cambridge University Press.
Wittgenstein, L. (1997). Philosophical investigations (G. E. M. Anscombe, Trans.). Oxford, England: Blackwell. (Original work published 1953)
Acknowledgment
The authors acknowledge financial support from the Minister of Education and Science
(MEC-SEJE006–15589-CO2–02) and EDU1009-13890-C02-02 (subprograma EDUC) and the Generalitat de Catalunya
(2008ARIE00063).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer Science+Business Media B.V.
About this chapter
Cite this chapter
Espinet, M., Izquierdo, M., Bonil, J., De Robles, S.L.R. (2012). The Role of Language in Modeling the Natural World: Perspectives in Science Education. In: Fraser, B., Tobin, K., McRobbie, C. (eds) Second International Handbook of Science Education. Springer International Handbooks of Education, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9041-7_89
Download citation
DOI: https://doi.org/10.1007/978-1-4020-9041-7_89
Published:
Publisher Name: Springer, Dordrecht
Print ISBN: 978-1-4020-9040-0
Online ISBN: 978-1-4020-9041-7
eBook Packages: Humanities, Social Sciences and LawEducation (R0)