The Role of Language in Modeling the Natural World: Perspectives in Science Education

  • Mariona EspinetEmail author
  • Mercè Izquierdo
  • Josep Bonil
  • S. Lizette Ramos De Robles
Part of the Springer International Handbooks of Education book series (SIHE, volume 24)


This chapter departs from previous handbooks’ chapters on language in science education, such as those written by Sutton (1998) and Carlsen (2007), in that it introduces a research program that specifically addresses the relationship between language and modeling processes in science education. The field will be reviewed taking into account the science education research work from Brazilian, French, Spanish, and British schools and other contributions. This review will consider the perspectives used to understand and depict language, models and modeling in science education. In addition, examples will be offered from the research work that point to the ways language and modeling are related in the science classroom. The international handbook (Fraser and Tobin 1998) contains a chapter on models and modeling in science education (Gilbert and Boutler 1998) that was not included in the most recent handbook, published in 2007. We would like to revive this perspective and propose a model-based view of science education in which language is central in science teaching and learning processes.


Curriculum Inquiry Learning Nature of science Teaching 



The authors acknowledge financial support from the Minister of Education and Science

(MEC-SEJE006–15589-CO2–02) and EDU1009-13890-C02-02 (subprograma EDUC) and the Generalitat de Catalunya



  1. Barth, B. (1987). L’apprentissage de l’abstraction. Paris: Retz.Google Scholar
  2. Buty, C., & Mortimer, E. (2008). Dialogic/authoritative discourse and modelling in a high school teaching sequence on optics. International Journal of Science Education, 30, 1635–1660.CrossRefGoogle Scholar
  3. Carlsen, W. S. (2007). Language and science learning. In S. Abell & N. Lederman (Eds.), Handbook of research on science education (pp. 57–74). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  4. Cartwright, N. (1999). The dappled world: A study of the boundaries of sciences. Cambridge, UK: Cambridge University Press.Google Scholar
  5. Clement, J. (1983). A conceptual model discussed by Galileo and used intuitively by physics students. In D. Gentner & A. L. Stevens (Eds.), Mental models (pp. 325–340). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  6. Develaki, M. (2007). The model-based view of scientific theories and the structuring of school science programmes. Science & Education, 16, 725–749.CrossRefGoogle Scholar
  7. Duranti, A., & Goodwin, C. (2000). Rethinking context. Language as an interactive phenomenon. New York: Cambridge University Press.Google Scholar
  8. Fourez, G. (2002). Les sciences dans l’enseignement secondaire. Didaskalia, 21, 107–122.Google Scholar
  9. Fraser, B. J., & Tobin, K. (Eds.). (1998). International handbook of science education. Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
  10. Galagovsky, L. R., & Adúriz-Bravo, A. (2001). Modelos y analogías en la enseñanza de las ciencias naturales. El concepto de modelo didáctico analógico. Enseñanza de las Ciencias, 19, 231–242.Google Scholar
  11. Giere, R. (1988). Explaining science: A cognitive approach. Chicago: University of Chicago Press.Google Scholar
  12. Gilbert, J. K., & Boutler, C. J. (1998). Learning science through models and modeling. In B. J. Fraser & K. Tobin (Eds.), International handbook of science education (pp. 53–66). Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
  13. Givry, D., & Roth, W.-M. (2006). Toward a new conception of conceptions: Interplay of talk, gestures, and structures in settings. Journal of Research in Science Teaching, 43, 1086–1109.CrossRefGoogle Scholar
  14. Gómez, A., Sanmartí, N., & Pujol, R. M. (2007). Fundamentación teórica y diseño de una unidad didáctica para la enseñanza del modelo ser vivo en la escuela primaria. Enseñanza de las Ciencias, 25, 325–340.Google Scholar
  15. Greca, I. M., & Moreira, M. A. (2000). Mental models, conceptual models, and modelling. International Journal of Science Education, 22, 1–11.CrossRefGoogle Scholar
  16. Gutiérrez, R., & Ogborn, J. (1992). A causal framework for analyzing alternative conceptions. International Journal of Science Education, 14, 201–220.CrossRefGoogle Scholar
  17. Halliday, M. A. K. (1978). Language as a social semiotics: The social interpretation of language and meaning. London: Edward Arnold.Google Scholar
  18. Halliday, M. A. K. (1985). An introduction to functional grammar. London: Edward Arnold.Google Scholar
  19. Halloun, I. (2007). Schematic concepts for schematic models of the real world: The Newtonian concept of force. Science & Education, 16, 653–697.CrossRefGoogle Scholar
  20. Harrison, A., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22, 1011–1026.CrossRefGoogle Scholar
  21. Hart, C. (2007). Models in physics, models for physics learning, and why the distinction may matter in the case of electric circuits. Research in Science Education, 38, 529–544.CrossRefGoogle Scholar
  22. Henze, I., vanDriel, J., & Verloop, N. (2007). Science teachers’ knowledge about teaching models and modelling in the context of a new syllabus on public understanding of science. Research in Science Education, 37, 99–122.CrossRefGoogle Scholar
  23. Izquierdo, M., Espinet, M., Bonil, J., & Pujol, R. M. (2004). Ciencia escolar y complejidad. Investigación en la Escuela, 53, 21–29.Google Scholar
  24. Izquierdo, M., Márquez, C., & Gouvea, G. (2008). A proposal for textbooks analysis: Rhetorical structures. Science Education International, 19, 209–218.Google Scholar
  25. Izquierdo, M., Sanmartí, N., & Espinet, M. (1999). Fundamentación y diseño de las prácticas escolares de ciencias experimental. Enseñanza de las Ciencias, 17, 45–59.Google Scholar
  26. Izquierdo-Aymerich, M., & Adúriz-Bravo, A. (2003). Epistemological foundations of school science. Science & Education, 12, 27–43.CrossRefGoogle Scholar
  27. Johnson-Laird, P. (1983). Mental models. Cambridge, MA: Harvard University Press.Google Scholar
  28. Justi, R., & Gilbert, J. (2003). Teachers’ views on the nature of models. International Journal of Science Education, 25, 1369–1386.CrossRefGoogle Scholar
  29. Koponen, I. T. (2007). Models and modelling in physics education: A critical reanalysis of philosophical underpinnings and suggestions for revisions. Science & Education, 16, 751–773.CrossRefGoogle Scholar
  30. Kress, G. R., Jewitt, C., Ogborn, J., & Tsatsarelis, C. (2001). Multimodal science teaching and learning: The rhetoric of science classroom. London/New York: Continuum.Google Scholar
  31. Kuhn, T. S. (1965). The structure of scientific revolutions. Chicago: University of Chicago Press.Google Scholar
  32. Leach, J., & Scott, P. (2003). Individual and sociocultural views of learning in science education. Science & Education, 12, 91–113.CrossRefGoogle Scholar
  33. Lemke, J. L. (1993). Talking science: Language, learning and values. Norwood, NJ: Ablex.Google Scholar
  34. Martins, I. (2001). Explicações, representações visuais e retórica na sala de aula de ciências. In E. F. Mortimer & A. L. Smolka (Eds.), Linguagem, cultura e cognição. Reflexões para o ensino e a sala de aula (pp. 139–151). Belo Horizonte, Brasil: Autentica.Google Scholar
  35. Márquez, C., Izquierdo, M., & Espinet, M. (2006). Multimodal science teacher’s discourse in modeling the water cycle. Science Education, 90, 202–226.CrossRefGoogle Scholar
  36. Moreira, M. A. (2001). Modelos mentais. In E. F. Mortimer & A. L. Smolka (Eds.), Linguagem, cultura e cognição. Reflexões para o ensino e a sala de aula (pp. 189–221). Belo Horizonte, Brasil: Autentica.Google Scholar
  37. Ogborn, J., Kress, G. R., Martins, I., & McGuillicuddy, K. (1996). Explaining science in the classroom. Buckingham, UK: Open University Press.Google Scholar
  38. Oliva, J. M., Aragón, M. M., & Mateo, J. (2003). Un estudio sobre el papel de las analogías en la construcción del modelo cinético-molecular de la materia. Enseñanza de las Ciencias, 21, 429–444.Google Scholar
  39. Orange-Ravachol, D., & Triquet, E. (2007). Sciences et récits, des rapports problématiques. Aster, 44, 7–22.Google Scholar
  40. Roth, W. M., & Lawless, D. (2002). Scientific investigations, metaphorical gestures, and the emergence of abstract scientific concepts. Learning and Instruction, 12, 285–304.CrossRefGoogle Scholar
  41. Santini, J. (2007). Jeux épistémiques et modélisation en clase ordinaire: les séismes aux tours moyen. Didaskalia, 31, 47–83.Google Scholar
  42. Selley, N. (2000) Students’ spontaneous use of a particulate model for dissolution. Research in Science Education, 30, 389–402.CrossRefGoogle Scholar
  43. Sensevy, G., & Santini, J. (2006). Modelisation: Un approache epistemologique. Aster, 43, 163–188.CrossRefGoogle Scholar
  44. Sensevy, G., Tiberghien, A., Santini, J., Laubé, S., & Griggs, P. (2008). An epistemological approach to modeling: Cases studies and implications for science teaching. Science Education, 92, 424–446.CrossRefGoogle Scholar
  45. Shepardson, D. P., Wee, B., Priddy, M., & Harbor, J. (2007). Students’ mental models of the environment. Journal of Research in Science Teaching, 44, 327–348.CrossRefGoogle Scholar
  46. Silva, C. C. (2007). The role of models and analogies in the electromagnetic theory: A historical case study. Science & Education, 16, 835–848.CrossRefGoogle Scholar
  47. Spiliotopoulou, V. (2007). Models of the universe: Children’s experiences and evidence from the history of science. Science & Education, 16, 801–833.CrossRefGoogle Scholar
  48. Sutton, C. (1996). Beliefs about science and beliefs about language. International Journal of Science Education, 18, 1–18.CrossRefGoogle Scholar
  49. Sutton, C. (1998). New perspectives on language in science. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education (pp. 27–38). Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
  50. Viennot, L. (2007). La physique dans la culture scientifique: entre raisonnement, récit et rituels. Aster, 44, 23–40.CrossRefGoogle Scholar
  51. Wenger, E. (1998). Communities of practice: Learning, meaning and identity. Cambridge, UK: Cambridge University Press.Google Scholar
  52. Wittgenstein, L. (1997). Philosophical investigations (G. E. M. Anscombe, Trans.). Oxford, England: Blackwell. (Original work published 1953)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Mariona Espinet
    • 1
    Email author
  • Mercè Izquierdo
    • 1
  • Josep Bonil
    • 1
  • S. Lizette Ramos De Robles
    • 2
  1. 1.Autonomous University of BarcelonaBarcelonaSpain
  2. 2.University of GuadalajaraJaliscoMéxico.

Personalised recommendations