Scaling and Hierarhical Structure of Cohesive Agglomerates of Nanoparticles

  • Leon M. Keer
  • Feodor M. Borodich
  • Binoy M. Shah
Conference paper
Part of the Iutam Bookseries book series (IUTAMBOOK, volume 10)


Aggregation of dry cohesive powders and dissipation of energy during loading of the aggregates are under consideration. Under the influence of interparticle adhesion, fine particles of the powders cluster together to form simple agglomerates. The simple agglomerates adhere together to form larger, complex agglomerates, which in turn, may adhere together and form a hierarchical structure. It is shown that contrary to diffusion-limited colloid aggregation, the simple agglomerates consisting of alumna or titanium dioxide particles are not mass fractals. The core structure of the simple agglomerates is described as a non-ordered homogeneous structure with a constant volume fraction, while the outer part (shell) can be considered as a rough surface that may have quite extended protuberances. It is shown that the total energy dissipated during relative motion between simple agglomerates depends on the amount of the primary cycles – “jump into contact – pull off” between cohesive particles. Finally, the specific properties of cohesive powder dampers are discussed.


Cohesive nanoparticles agglomeration hierarchal structure energy dissipation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Castellanos, A.: The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders. Adv. Phys. 54, 263–376 (2005).CrossRefGoogle Scholar
  2. 2.
    Torquato, S., Truskett, T., Debenedetti, P.: Is random close packing of spheres well defined? Phys. Rev. Lett. 84, 2064–2067 (2000).CrossRefGoogle Scholar
  3. 3.
    Bideau D., Troadec J., Lemaitre J., Oger L.: Dense packing of hard grains: Effects of grain size distribution. In: Physics of Finely Divided Matter (Boccara, N., and Daoud, M., eds.) Berlin: Springer-Verlag 1985, pp. 76–81.Google Scholar
  4. 4.
    Zhou, T., Li, H.: Estimation of agglomerate size for cohesive particles during fluidization. Powder Techno. 101, 57–62 (1999).CrossRefGoogle Scholar
  5. 5.
    Tabor, D. Surface forces and surface interactions. J. Colloid. Interface Sci., 58, 2–13 (1977).CrossRefGoogle Scholar
  6. 6.
    Maugis D.: Adhesion of spheres-the JKR-DMT transition using a Dugdale model. J. Colloid Interface Sci. 150, 243–269 (1992).CrossRefGoogle Scholar
  7. 7.
    Muller, V., Yushchenko, V., Derjaguin, B.: Influence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane. J. Colloid Interface Sci. 77, 91–101 (1980).CrossRefGoogle Scholar
  8. 8.
    Maugis, D.: Contact, adhesion and rupture of elastic solids. New York: Springer 2000.zbMATHGoogle Scholar
  9. 9.
    Rumpf, H.: The strength of granules and agglomerates. In: Agglomeration (Knepper, W., ed.), pp. 379–418, International Symposium on Agglomeration, Philadelphia, 1961. New York: Interscience Publisher, 1962.Google Scholar
  10. 10.
    Kendall, K.: Agglomerate strength. Powder Metall. 31, 28–31 (1988).Google Scholar
  11. 11.
    Oulanti O., Widmaier J., Pefferkorn E., Champ S., Auweter H.: Destabilization of polystyrene latex particles induced by adsorption of polyvinylamine: Mass, size and structure characteristics of the growing aggregates. J. Colloid Interface Sci.. 294, 95–103 (2006).CrossRefGoogle Scholar
  12. 12.
    Jiang Q., Logan B.: Fractal dimensions of aggregates determined from steady-state size distributions. Environ. Sci. Technol. 25, 2031–2038 (1991).CrossRefGoogle Scholar
  13. 13.
    Lin M., Lindsay H., Weitz D., Ball R., Klein R., Meakin P.: Universality in colloid aggregation. Nature 339, 360–362 (1989).CrossRefGoogle Scholar
  14. 14.
    Valverde J. M. Castellanos A.: Random loose packing of cohesive granular materials.Europhys. Lett. 75, 985–991 (2006).CrossRefGoogle Scholar
  15. 15.
    Muellera R., Kammlera H., Pratsinisa S., Vitalb A., Beaucagec G., Burtscher P.: Non-agglomerated dry silica nanoparticles. Powder Technol. 140, 40–48 (2004).CrossRefGoogle Scholar
  16. 16.
    Xiong C., Friedlander S.: Morphological properties of atmospheric aerosol aggregates. Proc Natl Acad Sci USA 98, 11851–11856 (2001).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Leon M. Keer
    • 1
  • Feodor M. Borodich
  • Binoy M. Shah
  1. 1.Walter P. Murphy Professor, Civil and Environmental Engineering DepartmentNorthwestern UniversityEvanstonUSA

Personalised recommendations