Skip to main content

Statistical Length Scale in Weibull Strength Theory and Its Interaction with Other Scaling Lengths in Quasibrittle Failure

  • Conference paper
IUTAM Symposium on Scaling in Solid Mechanics

Part of the book series: Iutam Bookseries ((IUTAMBOOK,volume 10))

  • 1067 Accesses

Abstract

The main result of the paper is the introduction of a statistical length scale into the Weibull theory. The classical Weibull strength theory is self-similar; a feature that can be illustrated by the fact that the strength dependence on structural size is a power law (a straight line in double logarithmic plot). Therefore, the theory predicts unlimited strength for extremely small structures. In the paper, we show that such behavior is a direct implication of the assumption that the structural elements have independent random strengths. We show that by introduction of statistical dependence in a form of spatial autocorrelation, the size dependent strength becomes bounded at the small size extreme. The local random strength is phenomenologically modeled as a random field with a certain autocorrelation function. In such model, the autocorrelation length plays a role of a statistical length scale. The theoretical part is followed by applications in fiber bundle models, chains of fiber bundle models and stochastic finite element method in the context of quasibrittle failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Daniels. H. E., “The statistical theory of the strength of bundles of threads”, Proceedings of the Royal Society. (London), 183A, pp. 405–435, 1945.

    Google Scholar 

  2. Coleman, B. D., “On the strength of classical fibres and fibre bundles”, Journal of the Mechanics and Physics of Solids, 7, pp. 60–70, 1958.

    Article  MATH  MathSciNet  Google Scholar 

  3. Gücer, D. E., Gurland, J. “Comparison of the statistics of two fracture modes”, Journal of Mechanics and Physics Solids 10, pp. 365–373, 1962.

    Article  Google Scholar 

  4. Phoenix, S. L., Taylor, H. M. “The asymptotic strength distribution of a general fiber bundle”, Advances in Applied Probability, 5, pp. 200–216, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  5. Phoenix, S. L. “The random strength of series-parallel structures with load sharing among members”, Probabilistic Mechanics, pp. 91–95, 1978.

    Google Scholar 

  6. Pan, N., Hua, T., Qiu, Y. “Relationship between fiber and yarn strength”, Textile Research Journal, 71(11), pp. 960–964. 2001.

    Google Scholar 

  7. Vořechovský, M., Chudoba, R. “Stochastic modeling of multi-filament yarns: II. Random properties over the length and size effect”, International Journal of Solids and Structures, 43 (3–4), pp. 435–458, ISSN 0020-7683, 2006.

    Article  MATH  Google Scholar 

  8. Bažant, Z.P., Pang, S.-D. “Activation energy based extreme value statistics and size effect in brittle and quasibrittle fracture”, Journal of the Mechanics and Physics of Solids, 55 (1), pp. 91–134, 2007.

    Article  MATH  Google Scholar 

  9. Weibull, W. “A statistical theory of the strength of materials”, Royal Swedish Institute of Engineering Research (Ingenioersvetenskaps Akad. Handl.), Stockholm, Vol. 151, Stockholm, 1939.

    Google Scholar 

  10. Fisher, R. A., Tippett, L. H. C. “Limiting forms of the frequency distribution of the largest and smallest member of a sample”, Proceedings of the Cambridge Philosophical Society, 24, pp. 180–190, 1928.

    Article  MATH  Google Scholar 

  11. Gnedenko, B. V. “Sur la distribution limite du terme maximum d’une série aléatorie”, Annals of Mathematics, 2nd Ser, 44(3), pp. 423–453, 1943.

    MathSciNet  Google Scholar 

  12. Bažant, Z. P., Vořechovský, M., Novák, D. “Asymptotic prediction of energetic-statistical size effect from deterministic finite element solutions”, Journal of Engineering Mechanics (ASCE), 133 (2), pp. 153–162, ISSN 0733-9399, 2007.

    Google Scholar 

  13. Bažant, Z. P., Pang. S. D., Vořechovský, M., Novák, D. “Energetic-statistical size effect simulated by SFEM with stratified sampling and crack band model”, International Journal of Numerical Methods in Engineering, 71(11), 1297–1320, 2007, DOI: 10.1002/nme. 1986.

    Article  Google Scholar 

  14. Vořechovské, M. “Statistical length scale in the Weibull strength theory and its interaction with other scaling lengths in quasibrittle failure”, International Journal of Solids and Structures, in preparation, 2007.

    Google Scholar 

  15. Vořechovské, M. “Stochastic fracture mechanics and size effect”, Brno University of Technology, Brno, Czech Republic, ISBN 80-214-2695-0, 2004.

    Google Scholar 

  16. Vořechovské, M. “Statistical alternatives of combined size effect on nominal strength for structures failing at crack initiation”, In: Stibor (Ed.) Problémy lomové mechaniky IV (Problems of Fracture Mechanics IV), Brno Univ. of Techn., invited lecture at the Academy of Sciences, Inst. of Physics of Materials, ISBN 80-214-2585-7 pp. 99–106, 2004.

    Google Scholar 

  17. Leadbetter, M. R., Lindgren, G., Rootzen, H. “Extremes and related properties of random sequences and processes”, Springer-Verlag, New York, ISBN-10: 0387907319, 1983.

    Google Scholar 

  18. Harlow, D. G., Smith, R. L., Taylor, H. M. “Lower tail analysis of the distribution of the strength of load-sharing systems”, Journal of Applied Probability, 20(2), pp. 358–367, doi:10.2307/3213808, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  19. Smith, R. L. “The asymptotic distribution of the strength of a series-parallel system with equal load-sharing”, The Annals of Probability, 10(1), pp. 137–171, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  20. Smith, R. L. “Limit theorems for the reliability of series-parallel load-sharing systems”, Ph.D. Thesis, Cornell University, Ithaca, New York, 1979.

    Google Scholar 

  21. Smith, R. L., Phoenix, S.L. “Asymptotic distributions for the failure of fibrous materials under series-parallel structure and equal load-sharing”, Journal of Applied Mechanics, 48, pp. 75–82, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  22. Cramér, H. Mathematical methods of statistics, Princeton University Press, ISBN-10: 0691080046, 1946.

    Google Scholar 

  23. Phoenix, S.L. “Statistical theory for the strength of twisted fiber bundles with applications to yarns and cables”, Textile Research Journal 49, pp. 407–423, 1979.

    Article  Google Scholar 

  24. Bažant, Z.P., Planas, J. “Fracture and size effect in concrete and other quasibrittle materials”, CRC Press, Boca Raton Florida and London, 1998.

    Google Scholar 

  25. Vořechovský, M. “Interplay of size effects in concrete specimens under tension studied via computational stochastic fracture mechanics”, International Journal of Solids and Structures, 44(9), pp. 2715–2731, ISSN 0020-7683, 2007.

    Article  MATH  Google Scholar 

  26. Vořechovský, M. Simulation of simply cross correlated random fields by series expansion methods, Structural safety, 30(4), pp. 337–363, 2008. ISSN 0167-4730, available on-line, 2007, DOI 0.1016/j.strusafe.2007.05.002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Vořechovský, M. (2009). Statistical Length Scale in Weibull Strength Theory and Its Interaction with Other Scaling Lengths in Quasibrittle Failure. In: Borodich, F. (eds) IUTAM Symposium on Scaling in Solid Mechanics. Iutam Bookseries, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9033-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9033-2_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9032-5

  • Online ISBN: 978-1-4020-9033-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics