Light-Induced Generation of Singlet Oxygen in Porous Silicon

Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Abstract

Porous silicon (por-Si) is discussed as a photosensitizer of the generation of highly reactive molecular oxygen, i.e. singlet oxygen. Photoluminescence and electron paramagnetic resonance spectroscopy give information on the photosensitization mechanism and efficiency. The experimental data demonstrate promising properties of por-Si as a photosensitizer of singlet oxygen generation for biomedical applications.

Keywords

singlet oxygen porous silicon energy transfer photosensitization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. J. Turro, Modern Molecular Photochemistry, Chapter 14. Singlet Oxygen and Chemiluminescent Organic Reactions, pp. 579–611. (University Science, Sausalito, CA, 1991).Google Scholar
  2. 2.
    J. G. Moser, Photodynamic Tumor Therapy: 2nd and 3rd Generation Photosensitizers (Harwood, Amsterdam, 1998).Google Scholar
  3. 3.
    D. R. Kearns, Chem. Rev. 71(4), 396 (1971).CrossRefGoogle Scholar
  4. 4.
    D. Kovalev, E. Gross, N. Künzner, F. Koch, V. Yu. Timoshenko, and M. Fujii, Phys. Rev. Lett. 89, 137401 (2002).PubMedCrossRefADSGoogle Scholar
  5. 5.
    E. Gross, D. Kovalev, N. Künzner, F. Koch, V. Yu. Timoshenko, and M. Fujii, Phys. Rev. B 68, 115405 (2003).CrossRefADSGoogle Scholar
  6. 6.
    M. Fujii, M. Usui, Sh. Hayashi, E. Gross, D. Kovalev, N. Künzner, J. Diener, and V. Yu. Timoshenko, Phys. Stat. Sol. (a) 202(8), 1385 (2005).CrossRefADSGoogle Scholar
  7. 7.
    D. Kovalev, H. Heckler, G. Polisski, and F. Koch, Phys. Stat. Sol. (b) 215, 871 (1999).CrossRefGoogle Scholar
  8. 8.
    V. Yu. Timoshenko, A. A. Kudryavtsev, L. A. Osminkina, A. S. Vorontzov, Yu. V. Ryabchikov, I. A. Belogorokhov, D. Kovalev, and P. K. Kashkarov, JETP Lett. 83(9), 423 (2006).CrossRefGoogle Scholar
  9. 9.
    E. A. Konstantinova, V. A. Demin, A. S. Vorontzov, Yu. V. Ryabchikov, I. A. Belogorokhov, L. A. Osminkina, P. A. Forsh, P. K. Kashkarov, and V. Yu. Timoshenko, Journal of Non-Cryst. Solids 352, 1156 (2006).CrossRefADSGoogle Scholar
  10. 10.
    E. A. Konstantinova, V. A. Demin, V. Yu. Timoshenko, and P. K. Kashkarov, JETP Lett. 85(1), 59 (2007).CrossRefADSGoogle Scholar
  11. 11.
    A. G. Cullis, L. T. Canham, and P. D. J. Calcott, J. Appl. Phys. 82, 909 (1997).CrossRefADSGoogle Scholar
  12. 12.
    O. Bisi, S. Ossicini, and L. Pavesi, Surf. Sci. Rep. 38, 1 (2000).CrossRefGoogle Scholar
  13. 13.
    T. Förster, Ann. der Phys. (Leipzig) 2, 55 (1948).MATHCrossRefGoogle Scholar
  14. 14.
    D. L. Dexter, J. Chem. Phys. 21, 836 (1953).CrossRefADSGoogle Scholar
  15. 15.
    I. Langmuir, J. Am. Chem. Soc. 38, 2221 (1916).CrossRefGoogle Scholar
  16. 16.
    Yu. V. Ryabchikov, I. A. Belogorokhov, A. S. Vorontsov, L. A. Osminkina, V. Yu. Timoshenko, and P. K. Kashkarov, Phys. Stat. Sol. (a) 204(5), 1271 (2007).CrossRefGoogle Scholar
  17. 17.
    D. Kovalev, E. Gross, J. Diener, V. Yu. Timoshenko, and M. Fujii, Appl. Phys. Lett. 85, 3590 (2004).CrossRefADSGoogle Scholar
  18. 18.
    J. Harper and M. J. Sailor, Langmuir 13, 4652 (1997).CrossRefGoogle Scholar
  19. 19.
    J. L. Cantin, M. Schoisswohl, H. J. Bardeleben, N. Hadj Zoubir, M. Vergnat, D. Stievenard, A. Grosman, C. Ortega, and J. Siejka, Phys. Rev. B 52, R11599 (1995).CrossRefADSGoogle Scholar
  20. 20.
    D. J. Lepine, Phys. Rev. B 6, 436 (1972).CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  1. 1.Physics DepartmentMoscow State M. V. Lomonosov UniversityMoscowRussia

Personalised recommendations