Optical Sensors for Carbon Dioxide and Their Applications

  • Andrew Mills
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)


There are few analytes in the world as significant as carbon dioxide, the basic chemical feedstock of life. Through green plant photosynthesis, carbon dioxide is converted to the fuel and food necessary for the continued existence of most known forms of life. In addition carbon dioxide is an indicator of the existence of life and a measure of health via respiration. Not surprisingly, therefore, one of the key, basic analytes routinely monitored in the blood of hospital patients is the level of dissolved carbon dioxide. The measurement of carbon dioxide levels is also an important feature of environmental monitoring, providing, as it does, an important indicator of the health of the hydrosphere or atmosphere. The use, presence and measurement of carbon dioxide are also important in many industries, including brewing and the biotechnologies. In the food industry, a revolution in food packaging has come about through the use of carbon dioxide in modified atmosphere packaging (MAP). In many industries, the use, or presence, of carbon dioxide is commonplace and its measurement and continuous monitoring essential. In this article, the basic concepts behind the major, different colourimetric and luminescent optical sensors for the detection and quantitative analysis of carbon dioxide are reviewed and illustrated with examples. The major applications of these sensors are discussed and their strengths and weaknesses highlighted.


carbon dioxide indicator ink luminescence colourimetric 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Rabinowitch and Govindjee, Photosynthesis (Wiley, New York, 1969).Google Scholar
  2. 2.
    C. L. lake, Clinical Monitoring (W.B. Saunders, Philadelphia, PA, 1990).Google Scholar
  3. 3.
    J. S. Gravenstein, Gas Monitoring and Pulse Oximetry (Butterworth-Heinemann, Boston, MA, 1990).Google Scholar
  4. 4.
    D. G. Mou, Process dynamics: instrumentation and control, Biotech. Adv. 1, 229–245 (1983).CrossRefGoogle Scholar
  5. 5.
    R. P. Wayne, Chemistry of Atmospheres, 3rd Edition (Oxford University Press, Oxford, 2000).Google Scholar
  6. 6.
    M. L. Rooney, Active Food Packaging (Blackie Academic & Professional, London, 1995)Google Scholar
  7. 7.
    J. W. Severinghaus and A. F. Bradley, Electrodes for blood Po2 and PCo2 determination, J. Appl. Physiol. 13, 515–520 (1958).PubMedGoogle Scholar
  8. 8.
    M. A. Jensen and G. A. Rechnitz, Reponse characteristics of the pCO2 electrode, Anal. Chem. 51, 1972–1977 (1979).CrossRefGoogle Scholar
  9. 9.
    W. R. Seitz, Chemical sensors based on fibre-optics, Anal. Chem. 56, 16A–34A (1984).CrossRefGoogle Scholar
  10. 10.
    Fiber Optical Chemical Sensors and Biosensors, volume 1, edited by O. S. Wolfbeis (CRC Press, Boca Raton, FL, 1991).Google Scholar
  11. 11.
    Fiber Optical Chemical Sensors and Biosensors, volume 2, edited by O. S. Wolfbeis (CRC Press, Boca Raton, FL, 1991).Google Scholar
  12. 12.
    G. Rao, S. B. Bambot, C. W. Kwong, H. Szmacinski, J. Sipior, R. Holavanahali, and G. Carter, Application of fluorescence sensing to bioreactors, in: Topics in Fluorescence Spectroscopy, Volume 4: Probe Design and Chemical Sensing, edited by J. R. Lakowicz (Plenum, New York, 1994), pp 417–448.Google Scholar
  13. 13.
    H. N. McMurray and J. Albadran, Colorimetric and fluorimetric polymer membrane gas-sensing materials, MRS Bulletin, 55–59 (1999).Google Scholar
  14. 14.
    O. S. Wolfbeis, Fibre-optic chemical sensors and biosensors, Anal. Chem. 72, 81R–89R (2000).PubMedCrossRefGoogle Scholar
  15. 15.
    A. Mills and K. Eaton, Optical sensors for carbon dioxide: an overview of sensing strategies past and present, Quim. Anal. 19, 75–86 (2000).Google Scholar
  16. 16.
    O. S. Wolfbeis, Fibre-optic chemical sensors and biosensors, Anal. Chem. 74, 2663–2678 (2002).PubMedCrossRefGoogle Scholar
  17. 17. (accessed September 2007).
  18. 18.
    M. D. DeGrandpre, T. R. Hammar, S. P. Smith, and F. L. Sayles, In situ measurements of seawater pCO2, Limnol. Oceanogr. 40, 969–975 (1995).CrossRefGoogle Scholar
  19. 19.
    M. D. DeGrandpre, M. M. Baehr, and T. R. Hammar, Calibration-free optical chemical sensors, Anal. Chem. 71, 1152–1159 (1999).CrossRefGoogle Scholar
  20. 20.
  21. 21.
    C. G. Fehder, U.S. Patent No. 5166075 (1992).Google Scholar
  22. 22.
    H. Jain and C. Vargese, Use of end tidal carbon dioxide detector device for checking endotracheal tube placement, J. Clin. Diag. Res. 1, 10–16 (2007).Google Scholar
  23. 23.
    N. Opitz and D. W. Lübbers, Compact CO2 gas analyser with favourable signal-to-noise ratio and resolution using special fluorescent sensors (optodes) illuminated by blue LED’s, Adv. Exp. Med. Biol. 180, 757–762 (1983).Google Scholar
  24. 24.
    A. Mills and Q. Chang, Modelled diffusion-controlled response and recovery behaviour of a naked optical film sensor with a hyperbolic-type response to analyte concentration, Analyst 117, 1461–1466 (1992).CrossRefADSGoogle Scholar
  25. 25.
  26. 26.
    M. Uttamlal and D. R. Walt, A fibre-optic carbon dioxide sensor for fermentation monitoring, Biotechnology 13, 597–601 (1995).CrossRefGoogle Scholar
  27. 27.
    A. Mills and Q. Chang, Carbon dioxide detector, U.S. Patent No. 5,480,611 (1996).Google Scholar
  28. 28.
    A. Mills, G. Chang, and N. McMurray, Equilibrium studies on colorimetric plastic film sensors for carbon dioxide, Anal. Chem. 64, 1383–1389 (1992).CrossRefGoogle Scholar
  29. 29.
    B. H. Weigl and O. S. Wolfbeis, Sensitivity studies on optical carbon dioxide sensors based on ion pairing, Sensor. Actuator. B 28, 151–156 (1995).CrossRefGoogle Scholar
  30. 30.
    X. Ge, Y. Rostov, and G. Rao, Low-cost non-invasive optical CO2 sensing for fermentation and cell culture, Biotech. Bioeng. 89, 329–334 (2004).CrossRefGoogle Scholar
  31. 31.
    S. M. Borisov, G. Neurauter, C. Schroeder, I. Klimat, and O. T. Wolfbeis, Modified dual lifetime referencing method for simultaneous optical determination and sensing of two analytes, Appl. Spectrosc. 60, 1167–1173 (2006).PubMedCrossRefADSGoogle Scholar
  32. 32.
    O. Oter, K. Ertekin, D. Topkaya, and S. Alp, Room temperature ionic liquids as optical sensor matrix materials for gaseous and dissolved CO2, Sensor. Actuator. B 117, 295–301 (2006).CrossRefGoogle Scholar
  33. 33.
    A. Mills and L. Wild, Measurement of dissolved carbon dioxide using colourimetric polymer films, in: Proceedings of Medical Sensors and Fibre Optic Sensors and Delivery Systems volume 2631, edited by G. Orellana and M. A. Scheggi (SPIE, Barcelona, 1995), pp. 100–109.Google Scholar
  34. 34.
    A. Mills, A. Lepre, and L. Wild, Breath-by-breath measurement of carbon dioxide using a plastic film optical sensor, Sensor. Actuator. B 38–39, 419–425 (1997).CrossRefGoogle Scholar
  35. 35.
  36. 36.
    D. B. Raemer, D. R. Walt, and C. Munkholm, U.S. PatentNo. 5005572 (1991).Google Scholar
  37. 37.
    A. Mills and Q. Chang, Fluorescence plastic thin-film sensor for carbon dioxide, Analyst 118, 839–843 (1993).CrossRefADSGoogle Scholar
  38. 38.
    Q. Chang, L. Randers-Eichhorn, J. R. Lakowicz, and G. Rao, Steam-sterilisable fluorescence lifetime-based sensing film for dissolved carbon dioxide, Biotechnol. Prog. 14, 326–331 (1998).PubMedCrossRefGoogle Scholar
  39. 39.
    A. Mills and Q. Chang, Carbon dioxide detector, U.S. PatentNo. 5,480,611 (1996).Google Scholar
  40. 40.
    C. Munkholm, Method for activation of polyanionic fluorescent dyes in low dielectric media with quaternary onium compounds, U.S. Patent No. 5,387,525 (1995).Google Scholar
  41. 41.
    P. Müller and P. C. Hauser, Fluorescence optical sensor for low concentrations of dissolved carbon dioxide, Analyst 121, 339–343 (1996).CrossRefADSGoogle Scholar
  42. 42.
    O. S. Wolfbeis, B. Kovacs, K. Goswami, and S. N. Klainer, Fibre-optic fluorescence carbon dioxide sensor for environmental monitoring, Mikrochim. Acta 129, 181–188 (1998).CrossRefGoogle Scholar
  43. 43.
    C. Malins and B. D. MacCraith, Dye-doped organically modified silica glass for fluorescence-based carbon dioxide gas detection, Analyst 123, 2373–2376 (1998).CrossRefADSGoogle Scholar
  44. 44.
    C. Malins, M. Niggermann, and B. M. MacCraith, Multi- and light-optical chemical sensor employing a plastic substrate, Meas. Sci. Technol. 11, 1105–1110 (2000).CrossRefADSGoogle Scholar
  45. 45.
    K. Ertekin, I. Klimant, G. Neurauter, and O. S. Wolfbeis, Characterisation of a reservoir-type capillary optical microsensor for pCO2 measurements, Talanta 59, 261–267 (2003).PubMedCrossRefGoogle Scholar
  46. 46.
    X. Ge, Y. Rostov, and G. Rao, High-stability non-invasive autoclavable naked optical CO2 sensor, Biosens Bioelectron 18, 857–865 (2003).PubMedCrossRefGoogle Scholar
  47. 47.
    D. A. Nivens, M. V. Schiza, and S. N. Angel, Multilayer sol-gel membranes for optical sensing applications: single layer pH and dual layer CO2 and NH3 sensors, Talanta 58, 543–550 (2002).PubMedCrossRefGoogle Scholar
  48. 48.
    J. R. Lakowicz, H. Szmacinski, and M. Karakelle, High-stability non-invasive autoclavable naked optical CO2 sensor, Anal. Chim. Acta, 272, 179–186 (1993).CrossRefGoogle Scholar
  49. 49.
    J. Sipior, S. Bambot, R. M. Smith, G. N. Carter, J. R. Lakowicz, and G. Rao, A lifetime-based optical CO2 gas sensor with blue or red excitation and Stokes or anti-Stokes detection, Anal. Biochem. 227, 309–318 (1995).PubMedCrossRefGoogle Scholar
  50. 50.
    J. Sipior, L. Randers-Eichhorn, J. R. Lakowicz, G. M. Carter, and G. Rao, Phase fluorimetric optical carbon dioxide gas sensor for fermentation off-gas monitoring, Biotechnol. Prog. 12, 266–271 (1996).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  1. 1.Department of Pure & Applied ChemistryUniversity of StrathclydeGlasgowUK

Personalised recommendations