Advertisement

Sensors Based on Technology “Nano-on-Micro” for Wireless Instruments Preventing Ecological and Industrial Catastrophes

  • Alexey Vasiliev
  • Roman Pavelko
  • Sergey Gogish-Klushin
  • Dmitriy Kharitonov
  • Olga Gogish-Klushina
  • Alexandr Pisliakov
  • Andrey Sokolov
  • Nikolay Samotaev
  • Vittorio Guarnieri
  • Mario Zen
  • Leandro Lorenzelli
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Abstract

The problem of gas analyzers compatible with wireless networks can be solved by using sensors based on the “nano-on-micro” technology. The basis of this technology consists in nano-composite sensing metal oxide semiconductor or thermocatalytic materials deposited on a microhotplate fabricated using silicon or alumina microelectronic technology. As a result, the sensor combines the advantages of both technologies: on the one hand, high stability and sufficient selectivity of nano-composite materials, and, on the other hand, microprocessor compatibility, low-cost, mass-production possibilities, and low power consumption of microelectronic substrates. Two methods for the fabrication of microhotplates are the most promising: the silicon based technology of silicon oxide/silicon nitride membranes and the CeraMEMS technology of thin alumina films (TAF). The first technology enables the fabrication of microheaters with a power consumption around 20 mW for an operating temperature below 450°C. Advantages of CeraMEMS platforms are: (1) operation at temperature up to 600°C and, potentially, up to 800°C; (2) robustness compared with silicon chip with thin membrane; (3) perfect Pt and sensing layer adhesion without any adhesive layers; (4) low cost of middle scale production (104–107 chips per year) compared with the silicon technology. The CeraMEMS platform can be used for the fabrication of semiconductor and thermocatalytic gas sensors, as a source of IR radiation for optical gas sensors and as bolometers. The sensor withstands ∼7 × 106 on-off cycles. Heater resistance drift is below 3% per year at 550°C.

Keywords

microhotplate nano-materials silicon technology CeraMEMS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Barsan, M. Schweizer-Berberich, and W. Gopel, Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report, Fresenius J. Anal. Chem. 365, 287 (1999).CrossRefGoogle Scholar
  2. 2.
    D. V. Sivukhin. General Course of Physics (Nauka, Moscow, 1977) Vol. 3, p. 542.Google Scholar
  3. 3.
    J. H. Kim, J. S. Sung, A. A. Vasiliev, et al., Propane/butane semiconductor gas sensor with low power consumption, Sensors and Actuators B 44, 452 (1997).CrossRefGoogle Scholar
  4. 4.
    R. Ionescu, C. Moise, and A. Vancu, Are the modulations of Schottky surface barrier the only explanation for gas sensing effects in sintered SnO2, Applied Surface Science 84, 291 (1995).CrossRefADSGoogle Scholar
  5. 5.
    A. Oprea, E. Moretton, N. Barsan, et al., Conduction model of SnO2 thin films based on conductance and Hall effect measurements, Journal of Applied Physics 100, 033716 (2006).CrossRefADSGoogle Scholar
  6. 6.
    Physical Quantities, Handbook edited by I. S. Grigoriev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991) p. 529.Google Scholar
  7. 7.
    I. G. Suzdalev, Nanotechnology: Physics and Chemistry of Nanoclusters, Nanostructures, and Nanomaterials (Editorial URSS, Moscow, 2006).Google Scholar
  8. 8.
    A. A. Vasiliev, Physical and Chemical Principles of the Design of Gas Sensors based on Metal Oxides and Structures Metal/Solid Electrolyte/Semiconductor, Dissertation, Doctor of Science Degree (Moscow, 2004).Google Scholar
  9. 9.
    Website of the company Epris: http://www.epris.ru
  10. 10.
    P. Fau, M. Sauvan, S. Trautweiler, et al., Nanosized tin oxide sensitive layer on a silicon platform for domestic gas application, Sensors and Actuators B 78, 83 (2001).CrossRefGoogle Scholar
  11. 11.
    M. Graf, A. Gurlo, N. Barsan, U. Weimar, and A. Hierlemann, Microfabricated gas sensor systems with sensitive nanocrystalline metal-oxide films, Journal of Nanoparticle Research 8, 823 (2006).CrossRefGoogle Scholar
  12. 12.
    S. M. Lee, D. C. Dyer, and J. W. Gardner, Design and optimisation of a high-temperature silicon micro-hotplate for nanoporous palladium pellistors, Microelectronics Journal 34, 115 (2003).CrossRefGoogle Scholar
  13. 13.
    C. Ducsa, M. Adam, P. Furjes, et al., Explosion-proof monitoring of hydrocarbons by mechanically stabilized, integrable calorimetric microsensors, Sensors and Actuators B 95, 189 (2003).CrossRefGoogle Scholar
  14. 14.
    P. Furjes, Cs. Ducso, I. Barsony, et al., Thermal characterization of a direction dependent flow sensor, Sensors and Actuators A 115, 417 (2004).CrossRefGoogle Scholar
  15. 15.
    A. A. Vasiliev, A. V. Pisliakov, M. Zen, et al., Membrane — type gas sensor with thick film sensing layer: optimization of heat losses, Eurosensors XIV, Denmark, p. 379 (2000).Google Scholar
  16. 16.
    D. Vincenzi, M. A. Butturi, V. Guidi, et al., Development of a low-power thick-film gas sensor deposited by screen-printing technique onto a micromachined hotplate. Sensors and Actuators B 77, 95 (2001).CrossRefGoogle Scholar
  17. 17.
    A. A. Vasiliev, R. G.Pavelko, X. Vilanova, et al., Micromachined thermocatalytic gas sensor with improved selectivity based on Pd/Pt doped YSZ material, 11th International Meeting on Chemical Sensors, Brescia, Italy (2006) p. 127.Google Scholar
  18. 18.
    A. Vila, J. Puigcorbe, D. Vogel, et al., Reliability analysis of Pt-Ti micro-hotplates operated at high temperature, Eurosensors XVII, Guimaraes, Portugal (2003) p.250.Google Scholar
  19. 19.
    V. A. Iovdalski, I. M. Olikhov, I. M. Bleivas, and V. M. Ippolitov, Hybrid integrated scheme of gas sensor, Patent PCT/RU96/002291, 10.10.1996.Google Scholar
  20. 20.
    P. Maccagnani, L. Dori, and P. Negrini, Thermo-insulated microstructures based on thick porous silicon membranes, Eurosensors XIII, The Hague, The Netherlands (1999) 25P4.Google Scholar
  21. 21.
    G. Wiche, A. Berns, H. Steffes, and E. Obermeier, Thermal analysis of silicon carbide based micro hotplates for metal oxide gas sensors, Sensors and Actuators A 123–124, 12 (2005).Google Scholar
  22. 22.
    I. L. Grigorishin, L. G. Polevskaya, and O. N. Kudanovich, Sensor of hydrogen based on thermoelectric transducer, Russian Journal on Sensors 3, 47 (2002).Google Scholar
  23. 23.
    D. Routkevich, Nano- and microfabrication with anodic alumina: a route to nanodevices, Foresight 9th Conference on Molecular Nanotechnology, Santa Clara, USA (2001).Google Scholar
  24. 24.
    A. A. Vasiliev, S. Yu. Gogish-Klushin, D. Yu. Kharitonov, et al., A novel approach to the micromachining sensors: the manufacturing of thin alumina membrane chips. Eurosensors XVI, Prague, Czech Republic (2002) p. 248.Google Scholar
  25. 25.
    A. A. Vasiliev, S. Yu. Gogish-Klushin, D. Yu. Kharitonov, and O. S. Gogish-Klushina, Gas sensors with thin membranes of nano-crystalline aluminum oxide as sensing elements. Russian Journal on Sensors and Systems 10, 4 (2006).Google Scholar
  26. 26.
    A. A. Vasiliev, R. G. Pavelko, S. Yu. Gogish-Klushin, D. Yu. Kharitonov, O. S. Gogish-Klushina, A. V. Sokolov, A. V. Pisliakov, and N. N. Samotaev, Alumina MEMS platform for impulse semiconductor and IR optic gas sensors, Sensors and Actuators B 132, 216–223 (2008).CrossRefGoogle Scholar
  27. 27.
    A. A. Vasiliev, A. V. Pisliakov, and A. V. Sokolov. Thick film sensor chip for CO detection in pulsing mode: detection mechanism, design, and realization, Transducers ’01 & Eurosensors XV, Munich, Germany (2001) Vol. 2, p. 1750.Google Scholar
  28. 28.
    N. N. Samotaev, A. A. Vasiliev, B. I. Podlepetsky, A. V. Sokolov, and A. V. Pisliakov. The mechanism of the formation of selective response of semiconductor gas sensor in mixture of CH4/H2/CO with air, Sensors and Actuators B 127, 242 (2007).CrossRefGoogle Scholar
  29. 29.
    E. E. Karpov, E. F. Karpov, A. A. Suchkov, E. S. Kharlamochkin. The ways of the improvement of thermocatalytec methanometers, Russian Journal on Sensors 4, 2 (2002).Google Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  • Alexey Vasiliev
    • 1
  • Roman Pavelko
    • 1
  • Sergey Gogish-Klushin
    • 2
  • Dmitriy Kharitonov
    • 2
  • Olga Gogish-Klushina
    • 2
  • Alexandr Pisliakov
    • 2
  • Andrey Sokolov
    • 2
  • Nikolay Samotaev
    • 2
  • Vittorio Guarnieri
    • 3
  • Mario Zen
    • 3
  • Leandro Lorenzelli
    • 3
  1. 1.University Rovira i Virgili, DEEEATarragonaSpain
  2. 2.Russian Research Center Kurchatov InstituteMoscowRussia
  3. 3.Istituto Trentino di Cultura, IRSTTrentoItaly

Personalised recommendations