Abstract
Studies on Drosophila model organisms are producing a wealth of information on the genetic basis of complex traits and on patterns of genetic divergence in specific genes. This emerging information is interpreted within an evolutionary framework but direct connections with fitness in nature are usually tenuous. Drosophila fitness under natural conditions can be difficult to define partly because of the small size of flies and immature stages, the tendency of flies to use ephemeral resources, and the interaction between Drosophila, yeasts and plant tissue. Here I briefly examine new ways in which some aspects of fitness have been measured in Drosophila under semi-natural and natural conditions. I highlight some of the insights that can be gained from combining genomic and other – omic assessments when studies are interpreted within a fitness framework. These types of studies can ultimately provide insights into the way selection produces evolutionary diversity within Drosophila and more generally.
Keywords
- Drosophila
- diversity
- fitness measurements
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Barker, J.S.F. 1992. Genetic variation in cactophilic Drosophila for oviposition on natural yeast substrates. Evolution 46: 1070–1083.
Barker, J.S.F. and East, P.D. 1980. Evidence for selection following perturbation of allozyme frequencies in a natural population of Drosophila. Nature 284: 166–168.
Barker, J.S.F., East, P.D. and Christiansen, F.B. 1989. Estimation of migration from a perturbation experiment in natural populations of Drosophila buzzatii Batterson and Wheeler. Biological Journal of the Linnean Society 37: 311–334.
Barker, J.S.F., Starmer, W.T. and Fogleman, J.C. 1994. Genotype specific habitat selection for oviposition sites in the cactophilic species Drosophila buzzatii. Heredity 72: 384–395.
Betran, E., Santos, M. and Ruiz, A. 1998. Antagonistic pleiotropic effect of second-chromosome inversions on body size and early life-history traits in Drosophila buzzatii. Evolution 52: 144–154.
Bijlsma, R., Bundgaard, J. and Boerema, A.C. 2000. Does inbreeding affect the extinction risk of small populations? Predictions from Drosophila. Journal of Evolutionary Biology 13: 502–514.
Bijlsma, R., Bundgaard, J. and Van Putten, W.F. 1999. Environmental dependence of inbreeding depression and purging in Drosophila melanogaster. Journal of Evolutionary Biology 12: 1125–1137.
Chippindale, A.K., Gibbs, A.G., Sheik, M., Yee, K.J., Djawdan, M., Bradley, T.J. and Rose, M.R. 1998. Resource acquisition and the evolution of stress resistance in Drosophila melanogaster. Evolution 52: 1342–1352.
Dierick, H.A. and Greenspan, R.J. 2006. Molecular analysis of flies selected for aggressive behaviour. Nature Genetics 38: 1023–1031.
Drapeau, M.D., Cyran, S.A., Viering, M.M., Geyer, P.K. and Long, A.D. 2006. A cis-regulatory sequence within the yellow locus of Drosophila melanogaster required for normal male mating success. Genetics 172: 1009–1030.
Feder, M.E., Blair, N. and Figueras, H. 1997. Natural thermal stress and heat-shock protein expression in Drosophila larvae and pupae. Functional Ecology 11: 90–100.
Feder, M.E., Roberts, S.P. and Bordelon, A.C. 2000. Molecular thermal telemetry of free-ranging adult Drosophila melanogaster. Oecologia 123: 460–465.
Ferreira, A.G.A. and Amos, W. 2006. Inbreeding depression and multiple regions showing heterozygote advantage in Drosophila melanogaster exposed to stress. Molecular Ecology 15: 3885–3893.
Gardner, M.P., Fowler, K., Barton, N.H. and Partridge, L. 2005. Genetic variation for total fitness in Drosophila melanogaster: Complex yet replicable patterns. Genetics 169: 1553–1571.
Gerber, B. and Stocker, R.F. 2007. The Drosophila larva as a model for studying chemosensation and chemosensory learning: A review. Chemical Senses 32: 65–89.
Hine, E., Chenoweth, S.F. and Blows, M.W. 2004. Multivariate quantitative genetics and the lek paradox: Genetic variance in male sexually selected traits of Drosophila serrata under field conditions. Evolution 58: 2754–2762.
Hoffmann, A.A. and Loeschcke, V. 2006. Are fitness effects of density mediated by body size? Evidence from Drosophila field releases. Evolutionary Ecology Research 8: 813–828.
Hoffmann, A.A. and McKechnie, S.W. 1991. Heritable variation in resource utilization and response in a winery population of Drosophila melanogaster. Evolution 45: 1000–1015.
Hoffmann, A.A. and O’Donnell, S. 1992. Heritable variation in the attraction of Drosophila melanogaster to fruit in the field. Biological Journal of the Linnean Society 47: 147–159.
Hoffmann, A.A., Ratna, E., Sgrò, C.M., Barton, M., Blacket, M., Hallas, R., De Garis, S. and Weeks, A.R. 2007. Antagonistic selection between adult thorax and wing size in field released Drosophila melanogaster independent of thermal conditions. Journal of Evolutionary Biology 20: 2219–2227.
Hoffmann, A.A., Sorensen, J.G. and Loeschcke, V. 2003. Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. Journal of Thermal Biology 28: 175–216.
Hoffmann, A.A. and Turelli, M. 1985. Distribution of Drosophila melanogaster on alternative resources – Effects of experience and starvation. American Naturalist 126: 662–679.
Jaenike, J. 1986. Genetic complexity of host-selection behaviour in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 83: 2148–2151.
James, A.C., Azevedo, R.B.R. and Partridge, L. 1997. Genetic and environmental responses to temperature of Drosophila melanogaster from a latitudinal cline. Genetics 146: 881–890.
Jones, J.S., Coyne, J.A. and Partridge, L. 1987. Estimation of the thermal niche of Drosophila melanogaster using a temperature sensitive mutation. American Naturalist 130: 83–90.
Junge-Berberović, R. 1996. Effect of thermal environment on life histories of free living Drosophila melanogaster and Drosophila subobscura. Oecologia 108: 262–272.
Jungen, H. and Hartl, D.L. 1979. Average fitness of populations of Drosophila melanogaster as estimated using compound-autosome strains. Evolution 33: 359–370.
Kamping, A. and van Delden, W. 1999. A long-term study on interactions between the Adh and alpha Gpdh allozyme polymorphisms and the chromosomal inversion In(2L)t in a semi natural population of Drosophila melanogaster. Journal of Evolutionary Biology 12: 809–821.
Krebs, R.A. and Feder, M.E. 1997. Natural variation in the expression of the heat-shock protein Hsp70 in a population of Drosophila melanogaster and its correlation with tolerance of ecologically relevant thermal stress. Evolution 51: 173–179.
Kristensen, T.N., Loeschcke, V. and Hoffmann, A.A. 2007a. Can artificially selected phenotypes influence a component of field fitness? Thermal selection and fly performance under thermal extremes. Proceedings of the Royal Society B-Biological Sciences 274: 771–778.
Kristensen, T.N., Loeschcke, V. and Hoffmann, A.A. 2007b. Linking inbreeding effects in captive populations to field performance – field releases with replicated Drosophila melanogaster lines under different temperatures. Conservation Biology 22: 189–199.
Loeschcke, V. and Hoffmann, A.A. 2007. Consequences of heat hardening on a field fitness component in Drosophila depend on environmental temperature. American Naturalist 169: 175–183.
Luong, L.T. and Polak, M. 2007. Costs of resistance in the Drosophila macrocheles system: A negative genetic correlation between ectoparasite resistance and reproduction. Evolution 61: 1391–1402.
Mackay, T.F.C. 2004. The genetic architecture of quantitative traits: lessons from Drosophila. Current Opinion in Genetics & Development 14: 253–257.
McBride, C.S. 2007. Rapid evolution of smell and taste receptor genes during host specialization in Drosophila sechellia. Proceedings of the National Academy of Sciences of the United States of America 104: 4996–5001.
McKechnie, S.W. and McKenzie, J.A. 1983. Polymorphism of alcohol-dehydrogenase (ADH) in a winery cellar population of Drosophila melanogaster – gene frequency association with temperature and genotypic difference in progeny production. Evolution 37: 850–853.
McKenzie, J.A., McKechnie, S.W. and Batterham, P. 1994. Perturbation of gene frequencies in a natural population of Drosophila melanogaster evidence for selection at the ADH locus. Genetica 92: 187–196.
McKenzie, J.A. and Parsons, P.A. 1974. Microdifferentiation in a natural population of Drosophila melanogaster to alcohol in environment. Genetics 77: 385–394.
Mitrovski, P. and Hoffmann, A.A. 2001. Postponed reproduction as an adaptation to winter conditions in Drosophila melanogaster: evidence for clinal variation under semi-natural conditions. Proceedings of the Royal Society of London Series B-Biological Sciences 268: 2163–2168.
Moth, J.J. and Barker, J.S.F. 1975. Micronized fluorescent dusts for marking Drosophila adults. Journal of Natural History 9: 393–396.
Nevo, E., Rashkovetsky, E., Pavlicek, T. and Korol, A. 1998. A complex adaptive syndrome in Drosophila caused by microclimatic contrasts. Heredity 80: 9–16.
Oakeshott, J.G., Wilson, S.R. and Knibb, W.R. 1988. Selection affecting enzyme polymorphisms in enclosed Drosophila populations maintained in a natural environment. Proceedings of the National Academy of Sciences of the United States of America 85: 293–297.
Olsen, K., Reynolds, K.T. and Hoffmann, A.A. 2001. A field cage test of the effects of the endosymbiont Wolbachia on Drosophila melanogaster. Heredity 86: 731–737.
Orengo, D.J. and Aguade, M. 2007. Genome scans of variation and adaptive change: Extended analysis of a candidate locus close to the phantom gene region in Drosophila melanogaster. Molecular Biology and Evolution 24: 1122–1129.
Partridge, L., Hoffmann, A. and Jones, J.S. 1987. Male size and mating success in Drosophila melanogaster and Drosophila pseudoobscura under field conditions. Animal Behaviour 35: 468–476.
Pool, J.E. and Aquadro, C.F. 2007. The genetic basis of adaptive pigmentation variation in Drosophila melanogaster. Molecular Ecology 16: 2844–2851.
Prout, T. 1971. Relation between fitness components and population prediction in Drosophila. 1. Estimation of fitness components. Genetics 68: 127–149.
Prud’homme, B., Gompel, N. and Carroll, S.B. 2007. Emerging principles of regulatory evolution. Proceedings of the National Academy of Sciences of the United States of America 104: 8605–8612.
Rion, S. and Kawecki, T.J. 2007. Evolutionary biology of starvation resistance: what we have learned from Drosophila. Journal of Evolutionary Biology 20: 1655–1664.
Rosewell, J. and Shorrocks, B. 1987. The implication of survival rates in natural populations of Drosophila – capture recapture experiments on domestic species. Biological Journal of the Linnean Society 32: 373–384.
Schmidt, P.S. and Conde, D.R. 2006. Environmental heterogeneity and the maintenance of genetic variation for reproductive diapause in Drosophila melanogaster. Evolution 60: 1602–1611.
Sgro, C.M. and Hoffmann, A.A. 2004. Genetic correlations, tradeoffs and environmental variation. Heredity 93: 241–248.
Sinclair, B.J., Gibbs, A.G. and Roberts, S.P. 2007. Gene transcription during exposure to, and recovery from, cold and desiccation stress in Drosophila melanogaster. Insect Molecular Biology 16: 435–443.
Sokolowski, M.B., Bauer, S.J., Waiping, V., Rodriguez, L., Wong, J.L. and Kent, C. 1986. Ecological genetics and behaviour of Drosophila melanogaster larvae in nature. Animal Behaviour 34: 403–408.
Sorensen, J.G., Nielsen, M.M. and Loeschcke, V. 2007. Gene expression profile analysis of Drosophila melanogaster selected for resistance to environmental stressors. Journal of Evolutionary Biology 20: 1624–1636.
Stalker, H.D. 1980. Chromosome studies in wild populations of Drosophila melanogaster 2. Relationship of inversion frequencies to latitude, season, wing loading and flight activity. Genetics 95: 211–223.
Sved, J.A. 1975. Fitness of 3rd chromosome homozygotes in Drosophila melanogaster. Genetical Research 25: 197–200.
Turelli, M. and Hoffmann, A.A. 1995. Cytoplasmic incompatibility in Drosophila simulans – Dynamics and parameter estimates from natural populations. Genetics 140: 1319–1338.
Van Der Linde, K. and Sevenster, J.G. 2006. Local adaptation of developmental time and starvation resistance in eight Drosophila species of the Philippines. Biological Journal of the Linnean Society 87: 115–125.
Van Naters, W.V.G. and Carlson, J.R. 2007. Receptors and neurons for fly odors in Drosophila. Current Biology 17: 606–612.
Warren, M., McGeoch, M.A., Nicolson, S.W. and Chown, S.L. 2006. Body size patterns in Drosophila inhabiting a mesocosm: interactive effects of spatial variation in temperature and abundance. Oecologia 149: 245–255.
Yadav, J.P. and Singh, B.N. 2007. Evolutionary genetics of Drosophila ananassae: evidence for trade-offs among several fitness traits. Biological Journal of the Linnean Society 90: 669–685.
Yang, J., McCart, C., Woods, D.J., Terhzaz, S., Greenwood, K.G., Ffrench-Constant, R.H. and Dow, J.A.T. 2007. A Drosophila systems approach to xenobiotic metabolism. Physiological Genomics 30: 223–231.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer Science+Business Media B.V.
About this chapter
Cite this chapter
Hoffmann, A.A. (2009). Drosophila and Selection in Nature: From Laboratory Fitness Components to Field Assessments. In: van der Werf, J., Graser, HU., Frankham, R., Gondro, C. (eds) Adaptation and Fitness in Animal Populations. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9005-9_11
Download citation
DOI: https://doi.org/10.1007/978-1-4020-9005-9_11
Publisher Name: Springer, Dordrecht
Print ISBN: 978-1-4020-9004-2
Online ISBN: 978-1-4020-9005-9
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)