Non-Conventional Generation and Transformation of Response

Most of our discussions in previous chapters were concentrated on sensors that can be excited by light and emit an informative light signal about the target binding. Meanwhile, this is not the only possibility for obtaining reporting information. Dyes, or luminophores in general, can also be excited in a chemical reaction (chemiluminescence), in a biochemical transformation (bioluminescence) and in a reaction at an electrode (electroluminescence and more specifically, electrochemi-luminescence). The reporting can be provided by deactivation of the excited state, not only in the form of emission but also in the form of electron transfer to the conducting surface. This allows producing an electrical signal directly, avoiding emission and detection of light. Moreover, the emission of a miniaturized semiconductor or polymeric light source can be directly coupled with the sensing event. Such coupling can be provided with the response of a miniaturized detector.

Excitation via the evanescent field effect is a powerful tool to introduce spatial resolution into the sensor system; it can be combined with different sensing technologies. If introduced into heterogeneous assays, it allows a direct response to the target binding.


Silver Nanoparticles Evanescent Wave Lasing Threshold Evanescent Field Stimulate Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aslan K, Geddes CD (2005) Microwave-accelerated metal-enhanced fluorescence: Platform technology for ultrafast and ultrabright assays. Analytical Chemistry 77:8057– 8067PubMedCrossRefGoogle Scholar
  2. Aslan K, Gryczynski I, Malicka J, Matveeva E, Lakowicz JR, Geddes CD (2005a) Metal-enhanced fluorescence: an emerging tool in biotechnology. Current Opinion in Biotechnology 16:55– 62CrossRefGoogle Scholar
  3. Aslan K, Leonenko Z, Lakowicz JR, Geddes CD (2005b) Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons. Journal of Fluorescence 15:643– 654CrossRefGoogle Scholar
  4. Aslan K, Huang J, Wilson GM, Geddes CD (2006) Metal-enhanced fluorescence-based RNA sensing. Journal of the American Chemical Society 128:4206– 4207PubMedCrossRefGoogle Scholar
  5. Aslan K, Malyn SN, Bector G, Geddes CD (2007a) Microwave-accelerated metal-enhanced fluorescence: an ultra-fast and sensitive DNA sensing platform. Analyst 132:1122– 1129CrossRefGoogle Scholar
  6. Aslan K, Malyn SN, Geddes CD (2007b) Angular-dependent metal-enhanced fluorescence from silver colloid-deposited films: opportunity for angular-ratiometric surface assays. Analyst 132:1112– 1121CrossRefGoogle Scholar
  7. Aslan K, Malyn SN, Geddes CD (2007c) Microwave-accelerated surface plasmon-coupled directional luminescence: application to fast and sensitive assays in buffer, human serum and whole blood. Journal of Immunological Methods 323:55– 64CrossRefGoogle Scholar
  8. Baj S, Krawczyk T (2007) Chemiluminescence detection of organic peroxides in a two-phase system. Analytica Chimica Acta 585:147– 153PubMedCrossRefGoogle Scholar
  9. Boyer JC, Cuccia LA, Capobianco JA (2007) Synthesis of colloidal upconverting NaYF4: Er3+/ Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. Nano Letters 7:847–852PubMedCrossRefGoogle Scholar
  10. Chatterjee DK, Rufaihah AJ, Zhang Y (2008) Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials 29:937–943PubMedCrossRefGoogle Scholar
  11. Chen Y, Munechika K, Ginger DS (2007) Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Letters 7:690–696PubMedCrossRefGoogle Scholar
  12. Chowdhury MH, Aslan K, Malyn SN, Lakowicz JR, Geddes CD (2006) Metal-enhanced chemi-luminescence: radiating plasmons generated from chemically induced electronic excited states. Applied Physics Letters 88:173104CrossRefGoogle Scholar
  13. De la Rosa E, Salas P, Diaz-Torres LA, Martinez A, Angeles C (2005) Strong visible cooperative up-conversion emission in ZrO2:Yb3+ nanocrystals. Journal of Nanoscience and Nanotechnology 5:1480–1486PubMedCrossRefGoogle Scholar
  14. Dennany L, Forster RJ, Rusling JF (2003) Simultaneous direct electrochemiluminescence and catalytic voltammetry detection of DNA in ultrathin films. Journal of the American Chemical Society 125:5213–5218PubMedCrossRefGoogle Scholar
  15. Drobizhev M, Rebane A, Suo Z, Spangler CW (2005) One-, two- and three-photon spectroscopy of pi-conjugated dendrimers: cooperative enhancement and coherent domains. Journal of Luminescence 111:291–305CrossRefGoogle Scholar
  16. Ekgasit S, Thammacharoen C, Yu F, Knoll W (2004) Evanescent field in surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopies. Analytical Chemistry 76:2210–2219PubMedCrossRefGoogle Scholar
  17. Fahnrich KA, Pravda M, Guilbault GG (2001) Recent applications of electrogenerated chemilu-minescence in chemical analysis. Talanta 54:531–559PubMedCrossRefGoogle Scholar
  18. Fine T, Leskinen P, Isobe T, Shiraishi H, Morita M, Marks RS, Virta M (2006) Luminescent yeast cells entrapped in hydrogels for estrogenic endocrine disrupting chemical biodetection. Biosensors & Bioelectronics 21:2263–2269CrossRefGoogle Scholar
  19. Frangioni JV (2006) Self-illuminating quantum dots light the way. Nature Biotechnology 24:326–328PubMedCrossRefGoogle Scholar
  20. Fu J, Padilha LA, Hagan DJ, Van Stryland EW, Przhonska OV, Bondar MV, Slominsky YL, Kachkovski AD (2007) Molecular structure — two-photon absorption property relations in polymethine dyes. Journal of the Optical Society of America B-Optical Physics 24:56–66CrossRefGoogle Scholar
  21. Geddes CD, Lakowicz JR (2002) Metal-enhanced fluorescence. Journal of Fluorescence 12:121–129CrossRefGoogle Scholar
  22. Gratzel M (2007) Photovoltaic and photoelectrochemical conversion of solar energy. Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences 365:993–1005CrossRefGoogle Scholar
  23. Gryczynski I, Malicka J, Shen YB, Gryczynski Z, Lakowicz JR (2002) Multiphoton excitation of fluorescence near metallic particles: enhanced and localized excitation. Journal of Physical Chemistry B 106:2191–2195CrossRefGoogle Scholar
  24. Gryczynski I, Malicka J, Jiang W, Fischer H, Chan WCW, Gryczynski Z, Grudzinski W, Lakowicz JR (2005) Surface-plasmon-coupled emission of quantum dots. Journal of Physical Chemistry B 109:1088–1093CrossRefGoogle Scholar
  25. Hanninen P, Soini A, Meltola N, Soini J, Soukka J, Soini E (2000) A new microvolume technique for bioaffinity assays using two-photon excitation. Nature Biotechnology 18:548–550PubMedCrossRefGoogle Scholar
  26. He GS, Zheng Q, Prasad PN, Grote JG, Hopkins FK (2006) Infrared two-photon-excited visible lasing from a DNA-surfactant-chromophore complex. Optics Letters 31:359–361PubMedCrossRefGoogle Scholar
  27. Huang XY, Li L, Qian HF, Dong CQ, Ren JC (2006) A resonance energy transfer between chemi-luminescent donors and luminescent quantum-dots as acceptors (CRET). Angewandte Chemie-International Edition 45:5140–5143CrossRefGoogle Scholar
  28. Kulmala S, Suomi J (2003) Current status of modern analytical luminescence methods. Analytica Chimica Acta 500:21–69CrossRefGoogle Scholar
  29. Kuningas K, Rantanen T, Ukonaho T, Lovgren T, Soukka T (2005) Homogeneous assay technology based on upconverting phosphors. Analytical Chemistry 77:7348–7355PubMedCrossRefGoogle Scholar
  30. Kuningas K, Ukonaho T, Pakkila H, Rantanen T, Rosenberg J, Lovgren T, Soukka T (2006) Upconversion fluorescence resonance energy transfer in a homogeneous immunoassay for estradiol. Analytical Chemistry 78:4690–4696PubMedCrossRefGoogle Scholar
  31. Lee KS, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. Journal of Physical Chemistry B 110:19220–19225CrossRefGoogle Scholar
  32. Lee TH, Gonzalez JI, Zheng J, Dickson RM (2005) Single-molecule optoelectronics. Accounts of Chemical Research 38:534–541PubMedCrossRefGoogle Scholar
  33. Li BX, He YZ (2007) Simultaneous determination of glucose, fructose and lactose in food samples using a continuous-flow chemiluminescence method with the aid of artificial neural networks. Luminescence 22:317–325PubMedCrossRefGoogle Scholar
  34. Liu X, Tan W (1999) A fiber-optic evanescent wave DNA biosensor based on novel molecular beacons. Analytical Chemistry 71:5054–5059PubMedCrossRefGoogle Scholar
  35. Miao WJ, Bard AJ (2003) Electrogenerated chemluminescence. 72. Determination of immobilized DNA and C-reactive protein on Au(111) electrodes using Tris(2,2′-bipyridyl)ruthenium(II) labels. Analytical Chemistry 75:5825–5834PubMedCrossRefGoogle Scholar
  36. Michelini E, Mirasoli M, Karp M, Virta M, Roda A (2004) Development of a bioluminescence resonance energy-transfer assay for estrogen-like compound in vivo monitoring. Analytical Chemistry 76:7069–7076PubMedCrossRefGoogle Scholar
  37. Neumann T, Johansson ML, Kambhampati D, Knoll W (2002) Surface-plasmon fluorescence spectroscopy. Advanced Functional Materials 12:575–586CrossRefGoogle Scholar
  38. Papkovsky DB, O'Riordan T, Soini A (2000) Phosphorescent porphyrin probes in biosensors and sensitive bioassays. Biochemical Society Transactions 28:74–77PubMedGoogle Scholar
  39. Park HJ, Vak D, Noh YY, Lim B, Kim DY (2007) Surface plasmon enhanced photoluminescence of conjugated polymers. Applied Physics Letters 90:161107CrossRefGoogle Scholar
  40. Paulmurugan R, Gambhir SS (2007) Combinatorial library screening for developing an improved split-firefly luciferase fragment-assisted complementation system for studying protein-protein interactions. Analytical Chemistry 79:2346–2353PubMedCrossRefGoogle Scholar
  41. Peter LM (2007) Dye-sensitized nanocrystalline solar cells. Physical Chemistry Chemical Physics 9:2630–2642PubMedCrossRefGoogle Scholar
  42. Ray K, Badugu R, Lakowicz JR (2007) Sulforhodamine adsorbed Langmuir-Blodgett layers on silver island films: effect of probe distance on the metal-enhanced fluorescence. Journal of Physical Chemistry C 111:7091–7097CrossRefGoogle Scholar
  43. Richter MM (2004) Electrochemiluminescence (ECL). Chemical Reviews 104:3003–3036PubMedCrossRefGoogle Scholar
  44. Robelek R, Niu LF, Schmid EL, Knoll W (2004) Multiplexed hybridization detection of quantum dot-conjugated DNA sequences using surface plasmon enhanced fluorescence microscopy and spectrometry. Analytical Chemistry 76:6160–6165PubMedCrossRefGoogle Scholar
  45. Roda A, Pasini P, Mirasoli M, Michelini E, Guardigli M (2004) Biotechnological applications of bioluminescence and chemiluminescence. Trends in Biotechnology 22:295–303PubMedCrossRefGoogle Scholar
  46. Rose A, Zhu ZG, Madigan CF, Swager TM, Bulovic V (2005) Sensitivity gains in chemosensing by lasing action in organic polymers. Nature 434:876–879PubMedCrossRefGoogle Scholar
  47. Sabanayagam CR, Lakowicz JR (2007) Increasing the sensitivity of DNA microarrays by metal-enhanced fluorescence using surface-bound silver nanoparticles. Nucleic Acids Research 35:e13PubMedCrossRefGoogle Scholar
  48. So MK, Xu CJ, Loening AM, Gambhir SS, Rao JH (2006) Self-illuminating quantum dot conjugates for in vivo imaging. Nature Biotechnology 24:339–343PubMedCrossRefGoogle Scholar
  49. So PTC, Dong CY, Masters BR, Berland KM (2000) Two-photon excitation fluorescence microscopy. Annual Review of Biomedical Engineering 2:399–429PubMedCrossRefGoogle Scholar
  50. Somers RC, Bawendi MG, Nocera DG (2007) CdSe nanocrystal based chem-/bio-sensors. Chemical Society Reviews 36:579–591PubMedCrossRefGoogle Scholar
  51. Taitt CR, Anderson GP, Ligler FS (2005) Evanescent wave fluorescence biosensors. Biosensors & Bioelectronics 20:2470–2487CrossRefGoogle Scholar
  52. Tokuyama H, Nakamura M (2005) Acceleration of reaction by microwave irradiation. Journal of Synthetic Organic Chemistry Japan 63:523–538Google Scholar
  53. Tovmachenko OG, Graf C, van den Heuvel DJ, van Blaaderen A, Gerritsen HC (2006) Fluorescence enhancement by metal-core/silica-shell nanoparticles. Advanced Materials 18:91–95CrossRefGoogle Scholar
  54. Varnavski OP, Ostrowski JC, Sukhomlinova L, Twieg RJ, Bazan GC, Goodson T (2002) Coherent effects in energy transport in model dendritic structures investigated by ultrafast fluorescence anisotropy spectroscopy. Journal of the American Chemical Society 124:1736–1743PubMedCrossRefGoogle Scholar
  55. Xie X, He X, Song Z (2007) A sensitive chemiluminescence procedure for the determination of carbon monoxide with myoglobin-luminol chemiluminescence system. Applied Spectroscopy 61:706–710PubMedCrossRefGoogle Scholar
  56. Xu SL, Cui H (2007) Luminol chemiluminescence catalysed by colloidal platinum nanoparticles. Luminescence 22:77–87PubMedCrossRefGoogle Scholar
  57. Xu Y, Piston DW, Johnson CH (1999) A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proceedings of the National Academy of Sciences of the United States of America 96:151–156PubMedCrossRefGoogle Scholar
  58. Xu Y, Cai H, Liu QJ, Qin LF, Wang LJ, Wang P (2006) A novel structure of LAPS array for cell-based biosensor. Rare Metal Materials and Engineering 35:51–54Google Scholar
  59. Yagai S, Kinoshita T, Higashi M, Kishikawa K, Nakanishi T, Karatsu T, Kitamura A (2007) Diversification of self-organized architectures in supramolecular dye assemblies. Journal of the American Chemical Society 129:13277–13287PubMedCrossRefGoogle Scholar
  60. Yakovleva J, Davidsson R, Bengtsson M, Laurell T, Emneus J (2003) Microfluidic enzyme immu-nosensors with immobilised protein A and G using chemiluminescence detection. Biosensors & Bioelectronics 19:21–34CrossRefGoogle Scholar
  61. Yashchuk VM, Gusak VV, Drnytruk IM, Prokopets VM, Kudrya VY, Losytskyy MY, Tokar VP, Gumenyuk YO, Yarmoluk SM, Kovalska VB, Balanda AO, Kryvorotenko DV (2007) Two-photon excited luminescent styryl dyes as probes for the DNA detection and imaging. Photostability and phototoxic influence on DNA. Molecular Crystals and Liquid Crystals 467:325–338CrossRefGoogle Scholar
  62. Yguerabide J, Yguerabide EE (1998) Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications — II. Experimental characterization. Analytical Biochemistry 262:157–176PubMedCrossRefGoogle Scholar
  63. Yoshinobu T, Iwasaki H, Ui Y, Furuichi K, Ermolenko Y, Mourzina Y, Wagner T, Nather N, Schoning MJ (2005) The light-addressable potentiometric sensor for multi-ion sensing and imaging. Methods 37:94–102PubMedCrossRefGoogle Scholar
  64. Zhang S, Zhang Z, Shi W, Eremin SA, Shen J (2006a) Development of a chemiluminescent ELISA for determining chloramphenicol in chicken muscle. Journal of Agricultural and Food Chemistry 54:5718–5722CrossRefGoogle Scholar
  65. Zhang YX, Aslan K, Previte MJR, Malyn SN, Geddes CD (2006b) Metal-enhanced phosphorescence: Interpretation in terms of triplet-coupled radiating plasmons. Journal of Physical Chemistry B 110:25108–25114CrossRefGoogle Scholar
  66. Zhang YX, Aslan K, Previte MJR, Geddes CD (2007) Metal-enhanced superoxide generation: A consequence of plasmon-enhanced triplet yields. Applied Physics Letters 91:023114CrossRefGoogle Scholar
  67. Zu YB, Ding ZF, Zhou JF, Lee YM, Bard AJ (2001) Scanning optical microscopy with an elec-trogenerated chemiluminescent light source at a nanometer tip. Analytical Chemistry 73:2153–2156PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Personalised recommendations