Skip to main content
  • 2065 Accesses

At the heart of any chemosensor or biosensor is its recognition unit (receptor). It is constructed for providing selective target binding from a mixture of different and sometimes closely related compounds. The high specificity and affinity of this unit is achieved by its appropriate structures allowing multi-point non-covalent interactions with the target. Such highly selective binding is called molecular recognition. In this chapter we discuss different binding units and the principles of their design and construction.

Some targets are small molecules and ions and for their recognition various coordination compounds can be used. Many of the targets, however, are larger molecules such as enzyme substrates, proteins, nucleic acids, macromolecular assemblies or even living cells. Their immense number requires a great variety of means for specific detection. All of these receptors or recognition units must be transformed into sensors by coupling a dye or nanoparticle to respond to the presence of the target without affecting the binding affinity. Therefore our goal is to achieve optimal binding and efficient labeling of the binder but to still maintain the target binding properties intact while adding the reporter function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al Attar HA, Norden J, O'Brien S, Monkman AP (2008) Improved single nucleotide polymorphisms detection using conjugated polymer/surfactant system and peptide nucleic acid. Biosensors & Bioelectronics 23:1466–1472

    Google Scholar 

  • Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O'Mahony J, Whitcombe MJ (2006) Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. Journal of Molecular Recognition 19:106–180

    PubMed  CAS  Google Scholar 

  • Al-Hassan KA, Khanfer MF (1998) Fluorescence probes for cyclodextrin interiors. Journal of Fluorescence 8:139–152

    CAS  Google Scholar 

  • Al-Jamal KT, Ruenraroengsak P, Hartell N, Florence AT (2006) An intrinsically fluorescent den- drimer as a nanoprobe of cell transport. Journal of Drug Targeting 14:405–412

    PubMed  CAS  Google Scholar 

  • Antoni P, Nystrom D, Hawker CJ, Hult A, Malkoch M (2007) A chemoselective approach for the accelerated synthesis of well-defined dendritic architectures. Chemical Communications:2249–2251

    Google Scholar 

  • Azzazy HM, Highsmith WE, Jr. (2002) Phage display technology: clinical applications and recent innovations. Clinical Biochemistry 35:425–445

    PubMed  CAS  Google Scholar 

  • Baker ES, Hong JW, Gaylord BS, Bazan GC, Bowers MT (2006) PNA/dsDNA complexes: site specific binding and dsDNA biosensor applications. Journal of the American Chemical Society 128:8484–8492

    PubMed  CAS  Google Scholar 

  • Balabai N, Linton B, Napper A, Priyadarshy S, Sukharevsky AP, Waldeck DH (1998) Orientational dynamics of beta-cyclodextrin inclusion complexes. Journal of Physical Chemistry B 102:9617–9624

    CAS  Google Scholar 

  • Barthe P, Cohen-Gonsaud M, Aldrian-Herrada G, Chavanieu A, Labesse G, Roumestand C (2004) Design of an amphipatic alpha-helical hairpin peptide. Comptes Rendus Chimie 7:249–252

    CAS  Google Scholar 

  • Benhar I (2007) Design of synthetic antibody libraries. Expert Opinion on Biological Therapy 7:763–779

    PubMed  CAS  Google Scholar 

  • Bethge L, Jarikote DV, Seitz O (2008) New cyanine dyes as base surrogates in PNA: forced intercalation probes (FIT-probes) for homogeneous SNP detection. Bioorganic & Medicinal Chemistry 16:114–125

    CAS  Google Scholar 

  • Binz HK, Pluckthun A (2005) Engineered proteins as specific binding reagents. Current Opinion in Biotechnology 16:459–469

    PubMed  CAS  Google Scholar 

  • Binz HK, Amstutz P, Pluckthun A (2005) Engineering novel binding proteins from nonimmu- noglobulin domains. Nature Biotechnology 23:1257–1268

    PubMed  CAS  Google Scholar 

  • Breslow R, Dong SD (1998) Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chemical Reviews 98:1997–2011

    PubMed  CAS  Google Scholar 

  • Brune M, Hunter JL, Corrie JET, Webb MR (1994) Direct, real-time measurement of rapid inorganic phosphate release using a novel fluorescent probe and its application to actomyosin sub-fragment 1 ATPase. Biochemistry 33:8262–8271

    PubMed  CAS  Google Scholar 

  • Butler RS, Myers AK, Bellarmine P, Abboud KA, Castellano RK (2007) Highly fluorescent donor-acceptor purines. Journal of Materials Chemistry 17:1863–1865

    CAS  Google Scholar 

  • Casadei J, Powell MJ, Kenten JH (1990) Expression and secretion of aequorin as a chimeric antibody by means of a mammalian expression vector. Proceedings of the National Academy of Sciences of the United States of America 87:2047–2051

    PubMed  CAS  Google Scholar 

  • Chen CT, Huang WP (2002) A highly selective fluorescent chemosensor for lead ions. Journal of the American Chemical Society 124:6246–6247

    PubMed  CAS  Google Scholar 

  • Collett JR, Cho EJ, Ellington AD (2005) Production and processing of aptamer microarrays. Methods 37:4–15

    PubMed  CAS  Google Scholar 

  • Cox WG, Singer VL (2004) Fluorescent DNA hybridization probe preparation using amine modification and reactive dye coupling. Biotechniques 36:114–122

    PubMed  CAS  Google Scholar 

  • de Lorimier RM, Smith JJ, Dwyer MA, Looger LL, Sali KM, Paavola CD, Rizk SS, Sadigov S, Conrad DW, Loew L, Hellinga HW (2002) Construction of a fluorescent biosensor family. Protein Science 11:2655–2675

    PubMed  Google Scholar 

  • Demchenko AP (2001a) Concepts and misconcepts in the analysis of simple kinetics of protein folding. Current Protein & Peptide Science 2:73–98

    CAS  Google Scholar 

  • Demchenko AP (2001b) Recognition between flexible protein molecules: induced and assisted folding. Journal of Molecular Recognition 14:42–61

    CAS  Google Scholar 

  • Demchenko AP, Chinarov VA (1999) Tolerance of protein structures to the changes of amino acid sequences and their interactions. The nature of the folding code. Protein and Peptide Letters 6:115–129

    CAS  Google Scholar 

  • de Silva AP, Gunaratne HQN, Gunnaugsson T, Huxley AJM, McRoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chemical Reviews 97:1515–1566

    PubMed  Google Scholar 

  • Douhal A (2004) Ultrafast guest dynamics in cyclodextrin nanocavities. Chemical Reviews 104:1955–1976

    PubMed  CAS  Google Scholar 

  • Dwyer MA, Hellinga HW (2004) Periplasmic binding proteins: a versatile superfamily for protein engineering. Current Opinion in Structural Biology 14:495–504

    PubMed  CAS  Google Scholar 

  • Edwards BM, Barash SC, Main SH, Choi GH, Minter R, Ullrich S, Williams E, Du Fou L, Wilton J, Albert VR, Ruben SM, Vaughan TJ (2003) The remarkable flexibility of the human antibody repertoire; isolation of over one thousand different antibodies to a single protein, BLyS. Journal of Molecular Biology 334:103–118

    PubMed  CAS  Google Scholar 

  • Eklund M, Axelsson L, Uhlen M, Nygren PA (2002) Anti-idiotypic protein domains selected from protein A-based affibody libraries. Proteins-Structure Function and Genetics 48:454–462

    CAS  Google Scholar 

  • Enander K, Dolphin GT, Andersson LK, Liedberg B, Lundstrom I, Baltzer L (2002) Designed, folded polypeptide scaffolds that combine key biosensing events of recognition and reporting. Journal of Organic Chemistry 67:3120–3123

    PubMed  CAS  Google Scholar 

  • Enander K, Dolphin GT, Baltzer L (2004a) Designed, functionalized helix-loop-helix motifs that bind human carbonic anhydrase II: a new class of synthetic receptor molecules. Journal of the American Chemical Society 126:4464–4465

    CAS  Google Scholar 

  • Enander K, Dolphin GT, Liedberg B, Lundstrom I, Baltzer L (2004b) A versatile polypeptide platform for integrated recognition and reporting: affinity arrays for protein-ligand interaction analysis. Chemistry-A European Journal 10:2375–2385

    CAS  Google Scholar 

  • Enander K, Choulier L, Olsson AL, Yushchenko DA, Kanmert D, Klymchenko AS, Demchenko AP, Mély Y, Altschuh DA (2008) Peptide-Based, Ratiometric Biosensor Construct for Direct Fluorescence Detection of a Protein Analyte. Bioconjugate Chemistry 19:1864–1870

    PubMed  CAS  Google Scholar 

  • Engfeldt T, Renberg B, Brumer H, Nygren PA, Karlstrom AE (2005) Chemical synthesis of triple- labelled three-helix bundle binding proteins for specific fluorescent detection of unlabelled protein. Chembiochem 6:1043–1050

    PubMed  CAS  Google Scholar 

  • Fletcher S, Hamilton AD (2007) Protein-protein interaction inhibitors: small molecules from screening techniques. Current Topics in Medicinal Chemistry 7:922–927

    PubMed  CAS  Google Scholar 

  • Flores S, Echols N, Milburn D, Hespenheide B, Keating K, Lu J, Wells S, Yu EZ, Thorpe M, Gerstein M (2006) The database of macromolecular motions: new features added at the decade mark. Nucleic Acids Research 34:D296–D301

    PubMed  CAS  Google Scholar 

  • Flower DR, North ACT, Sansom CE (2000) The lipocalin protein family: structural and sequence overview. Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology 1482:9–24

    CAS  Google Scholar 

  • Gellman SH, Woolfson DN (2002) Mini-proteins Trp the light fantastic. Nature Structural Biology 9:408–410

    PubMed  CAS  Google Scholar 

  • Gilardi G, Zhou LQ, Hibbert L, Cass AEG (1994) Engineering the maltose-binding protein for reagentless fluorescence sensing. Analytical Chemistry 66:3840–3847

    PubMed  CAS  Google Scholar 

  • Glasner ME, Gerlt JA, Babbitt PC (2007) Mechanisms of protein evolution and their application to protein engineering. Advances in Enzymology and Related Areas in Molecular Biology 75:193–239,xii–xiii

    CAS  Google Scholar 

  • Gomara MJ, Haro I (2007) Synthetic peptides for the immunodiagnosis of human diseases. Current Medicinal Chemistry 14:531–546

    PubMed  CAS  Google Scholar 

  • Goodchild S, Love T, Hopkins N, Mayers C (2006) Engineering antibodies for biosensor technologies. Advances in Applied Microbiology 58:185–226

    PubMed  CAS  Google Scholar 

  • Gopinath SCB (2007) Methods developed for SELEX. Analytical and Bioanalytical Chemistry 387:171–182

    PubMed  CAS  Google Scholar 

  • Guntas G, Ostermeier M (2004) Creation of an allosteric enzyme by domain insertion. Journal of Molecular Biology 336:263–273

    PubMed  CAS  Google Scholar 

  • Guthrie JW, Hamula CLA, Zhang HQ, Le XC (2006) Assays for cytokines using aptamers.Methods 38:324–330

    PubMed  CAS  Google Scholar 

  • Hamada H, Kameshima N, Szymanska A, Wegner K, Lankiewicz L, Shinohara H, Taki M, Sisido M (2005) Position-specific incorporation of a highly photodurable and blue-laser excitable fluorescent amino acid into proteins for fluorescence sensing. Bioorganic & Medicinal Chemistry 13:3379–3384

    CAS  Google Scholar 

  • Hamula CLA, Guthrie JW, Zhang HQ, Li XF, Le XC (2006) Selection and analytical applications of aptamers. Trac-Trends in Analytical Chemistry 25:681–691

    CAS  Google Scholar 

  • Haupt K, Mosbach K (1999) Molecularly imprinted polymers in chemical and biological sensing. Biochemical Society Transactions 27:344–350

    PubMed  CAS  Google Scholar 

  • Haupt K, Mosbach K (2000) Molecularly imprinted polymers and their use in biomimetic sensors. Chemical Reviews 100:2495–2504

    PubMed  CAS  Google Scholar 

  • Hazra P, Chakrabarty D, Chakraborty A, Sarkar N (2004) Intramolecular charge transfer and solvation dynamics of Nile Red in the nanocavity of cyclodextrins. Chemical Physics Letters 388:150–157

    CAS  Google Scholar 

  • Hermann T, Patel DJ (2000) Biochemistry - adaptive recognition by nucleic acid aptamers. Science 287:820–825

    PubMed  CAS  Google Scholar 

  • Hesselberth JR, Miller D, Robertus J, Ellington AD (2000) In vitro selection of RNA molecules that inhibit the activity of ricin A-chain. Journal of Biological Chemistry 275:4937–4942

    PubMed  CAS  Google Scholar 

  • Heyduk E, Heyduk T (2005) Nucleic acid-based fluorescence sensors for detecting proteins. Analytical Chemistry 77:1147–1156

    PubMed  CAS  Google Scholar 

  • Hicke BJ, Marion C, Chang YF, Gould T, Lynott CK, Parma D, Schmidt PG, Warren S (2001) Tenascin-C aptamers are generated using tumor cells and purified protein. Journal of Biological Chemistry 276:48644–48654

    PubMed  CAS  Google Scholar 

  • Hillberg AL, Brain KR, Allender CJ (2005) Molecular imprinted polymer sensors: implications for therapeutics. Advanced Drug Delivery Reviews 57:1875–1889

    PubMed  CAS  Google Scholar 

  • Hossain MA, Mihara H, Ueno A (2003) Fluorescence resonance energy transfer in a novel cyclo-dextrin-peptide conjugate for detecting steroid molecules. Bioorganic & Medicinal Chemistry Letters 13:4305–4308

    CAS  Google Scholar 

  • Hosse RJ, Rothe A, Power BE (2006) A new generation of protein display scaffolds for molecular recognition. Protein Science 15:14–27

    PubMed  CAS  Google Scholar 

  • Hunt CE, Ansell RJ (2006) Use of fluorescence shift and fluorescence anisotropy to evaluate the re-binding of template to (S)-propranolol imprinted polymers. Analyst 131:678–683

    PubMed  CAS  Google Scholar 

  • Hust M, Dubel S (2004) Mating antibody phage display with proteomics. Trends in Biotechnology 22:8–14

    PubMed  CAS  Google Scholar 

  • Jennings K, Diamond D (2001) Enantioselective molecular sensing of aromatic amines using tetra-(S)-di-2-naphthylprolinol calix[4]arene. Analyst 126:1063–1067

    PubMed  CAS  Google Scholar 

  • Jespers L, Bonnert TP, Winter G (2004) Selection of optical biosensors from chemisynthetic antibody libraries. Protein Engineering Design & Selection 17:709–713

    CAS  Google Scholar 

  • Jhaveri S, Rajendran M, Ellington AD (2000) In vitro selection of signaling aptamers. Nature Biotechnology 18:1293–1297

    PubMed  CAS  Google Scholar 

  • Jiang Y, Fang X, Bai C (2004) Signaling aptamer/protein binding by a molecular light switch complex. Analytical Chemistry 76:5230–5235

    PubMed  CAS  Google Scholar 

  • Jin T, Fujii F, Yamada E, Nodasaka Y, Kinjo M (2006) Control of the optical properties of quantum dots by surface coating with calix n arene carboxylic acids. Journal of the American Chemical Society 128:9288–9289

    PubMed  CAS  Google Scholar 

  • Kachkovskiy GO, Shandura MP, Drapaylo AB, Slominskii JL, Tolmachev OI, Kalchenko VI (2006) New calix[4]arene based hydroxystyryl cyanine dyes. Journal of Inclusion Phenomena and Macrocyclic Chemistry 56:315–321

    CAS  Google Scholar 

  • Katilius E, Katiliene Z, Woodbury NW (2006) Signaling aptamers created using fluorescent nucleotide analogues. Analytical Chemistry 78:6484–6489

    PubMed  CAS  Google Scholar 

  • Kim JS, Noh KH, Lee SH, Kim SK, Kim SK, Yoon JY (2003) Molecular taekwondo. 2. A new calix[4]azacrown bearing two different binding sites as a new fluorescent ionophore. Journal of Organic Chemistry 68:597–600

    PubMed  CAS  Google Scholar 

  • Kodadek T (2002) Development of protein-detecting microarrays and related devices. Trends in Biochemical Sciences 27:295–300

    PubMed  CAS  Google Scholar 

  • Korndorfer IP, Schlehuber S, Skerra A (2003) Structural mechanism of specific ligand recognition by a lipocalin tailored for the complexation of digoxigenin. Journal of Molecular Biology 330:385–396

    PubMed  CAS  Google Scholar 

  • Kubinyi M, Vidoczy T, Varga O, Nagy K, Bitter I (2005) Absorption and fluorescence spectro-scopic study on complexation of oxazine 1 dye by calix 8 arenesulfonate. Applied Spectroscopy 59:134–139

    PubMed  CAS  Google Scholar 

  • Kulagina NV, Shaffer KM, Anderson GP, Ligler FS, Taitt CR (2006) Antimicrobial peptide-based array for Escherichia coli and Salmonella screening. Analytica Chimica Acta 575:9–15

    PubMed  CAS  Google Scholar 

  • Lakowicz JR (2007) Principles of fluorescence spectroscopy. Springer, New York

    Google Scholar 

  • Leray I, Lefevre JP, Delouis JF, Delaire J, Valeur B (2001) Synthesis and photophysical and cation-binding properties of mono- and tetranaphthylcalix 4 arenes as highly sensitive and selective fluorescent sensors for sodium. Chemistry-A European Journal 7:4590–4598

    CAS  Google Scholar 

  • Levin AM, Weiss GA (2006) Optimizing the affinity and specificity of proteins with molecular display. Molecular Biosystems 2:49–57

    PubMed  CAS  Google Scholar 

  • Li J, Kendig CE, Nesterov EE (2007) Chemosensory performance of molecularly imprinted fluo rescent conjugated polymer materials. Journal of the American Chemical Society 129:15911–15918

    PubMed  CAS  Google Scholar 

  • Li JJ, Fang X, Tan W (2002) Molecular aptamer beacons for real-time protein recognition. Biochemical and Biophysical Research Communications 292:31–40

    PubMed  CAS  Google Scholar 

  • Liu B, Bazan GC (2005) Methods for strand-specific DNA detection with cationic conjugated polymers suitable for incorporation into DNA chips and microarrays. Proceedings of the National Academy of Sciences of the United States of America 102:589–593

    PubMed  CAS  Google Scholar 

  • Liu Y, Song Y, Chen Y, Li XQ, Ding F, Zhong RQ (2004) Biquinolino-modified beta-cyclodextrin dimers and their metal complexes as efficient fluorescent sensors for the molecular recognition of steroids. Chemistry 10:3685–3696

    PubMed  CAS  Google Scholar 

  • Liu Y, Liang P, Chen Y, Zhao YL, Ding F, Yu A (2005) Spectrophotometric study of fluorescence sensing and selective binding of biochemical substrates by 2,2′-bridged biso(beta-cyclodextrin) and its water-soluble fullerene conjugate. Journal of Physical Chemistry B 109:23739–23744

    CAS  Google Scholar 

  • Looger LL, Dwyer MA, Smith JJ, Hellinga HW (2003) Computational design of receptor and sensor proteins with novel functions. Nature 423:185–190

    PubMed  CAS  Google Scholar 

  • Makabe A, Kinoshita K, Narita M, Hamada F (2002) Guest-responsive fluorescence variations of gamma-cyclodextrins labeled with hetero-functionalized pyrene and tosyl moieties. Analytical Sciences 18:119–124

    PubMed  CAS  Google Scholar 

  • Marvin JS, Hellinga HW (1998) Engineering biosensors by introducing fluorescent allosteric signal transducers: construction of a novel glucose sensor. Journal of the American Chemical Society 120:7–11

    CAS  Google Scholar 

  • Marvin JS, Hellinga HW (2001a) Conversion of a maltose receptor into a zinc biosensor by computational design. Proceedings of the National Academy of Sciences of the United States of America 98:4955–4960

    CAS  Google Scholar 

  • Marvin JS, Hellinga HW (2001b) Manipulation of ligand binding affinity by exploitation of con-formational coupling. Nature Structural Biology 8:795–798

    CAS  Google Scholar 

  • Marvin JS, Corcoran EE, Hattangadi NA, Zhang JV, Gere SA, Hellinga HW (1997) The rational design of allosteric interactions in a monomeric protein and its applications to the construction of biosensors. Proceedings of the National Academy of Sciences of the United States of America 94:4366–4371

    PubMed  CAS  Google Scholar 

  • McCauley TG, Hamaguchi N, Stanton M (2003) Aptamer-based biosensor arrays for detection and quantification of biological macromolecules. Analytical Biochemistry 319:244–250

    PubMed  CAS  Google Scholar 

  • McQuade DT, Pullen AE, Swager TM (2000) Conjugated polymer-based chemical sensors. Chemical Reviews 100:2537–2574

    PubMed  CAS  Google Scholar 

  • Medintz IL, Deschamps JR (2006) Maltose-binding protein: a versatile platform for prototyping biosensing. Current Opinion in Biotechnology 17:17–27

    PubMed  CAS  Google Scholar 

  • Medintz IL, Goldman ER, Lassman ME, Mauro JM (2003) A fluorescence resonance energy transfer sensor based on maltose binding protein. Bioconjugate Chemistry 14:909–918

    PubMed  CAS  Google Scholar 

  • Metivier R, Leray I, Valeur B (2004) Lead and mercury sensing by calixarene-based fluoroiono-phores bearing two or four dansyl fluorophores. Chemistry-A European Journal 10:4480–4490

    CAS  Google Scholar 

  • Mohanty J, Bhasikuttan AC, Nau WM, Pal H (2006) Host-guest complexation of neutral red with macrocyclic host molecules: contrasting pK(a) shifts and binding affinities for cucurbit 7 uril and beta-cyclodextrin. Journal of Physical Chemistry B 110:5132–5138

    CAS  Google Scholar 

  • Mondal SK, Sahu K, Ghosh S, Sen P, Bhattacharyya K (2006) Excited-state proton transfer from pyranine to acetate in gamma-cyclodextrin and hydroxypropyl gamma-cyclodextrin. Journal of Physical Chemistry A 110:13646–13652

    CAS  Google Scholar 

  • Mosbach K, Haupt K (1998) Some new developments and challenges in non-covalent molecular imprinting technology. Journal of Molecular Recognition 11:62–68

    PubMed  CAS  Google Scholar 

  • Muyldermans S (2001) Single domain camel antibodies: current status. Journal of Biotechnology 74:277–302

    PubMed  CAS  Google Scholar 

  • Nanduri V, Kim G, Morgan MT, Ess D, Hahm BK, Kothapalli A, Valadez A, Geng T, Bhunia AK (2006) Antibody immobilization on waveguides using a flow-through system shows improved Listeria monocytogenes detection in an automated fiber optic biosensor: RAPTOR (TM).Sensors 6:808–822

    CAS  Google Scholar 

  • Navarro-Villoslada F, Urraca JL, Moreno-Bondi MC, Orellana G (2007) Zearalenone sensing with molecularly imprinted polymers and tailored fluorescent probes. Sensors and Actuators B-Chemical 121:67–73

    Google Scholar 

  • Neuweiler H, Schulz A, Vaiana AC, Smith JC, Kaul S, Wolfrum J, Sauer M (2002) Detection of individual p53-autoantibodies by using quenched peptide-based molecular probes. Angewandte Chemie-International Edition in English 41:4769–4773

    CAS  Google Scholar 

  • Ngundi MM, Kulagina NV, Anderson GP, Taitt CR (2006) Nonantibody-based recognition: alternative molecules for detection of pathogens. Expert Review of Proteomics 3:511–524

    PubMed  CAS  Google Scholar 

  • Niu WZ, Jiang N, Hu YH (2007) Detection of proteins based on amino acid sequences by multiple aptamers against tripeptides. Analytical Biochemistry 362:126–135

    PubMed  CAS  Google Scholar 

  • Nutiu R, Li YF (2004) Structure-switching signaling aptamers: transducing molecular recognition into fluorescence signaling. Chemistry-A European Journal 10:1868–1876

    CAS  Google Scholar 

  • Nutiu R, Li YF (2005a) Aptamers with fluorescence-signaling properties. Methods 37:16–25

    CAS  Google Scholar 

  • Nutiu R, Li YF (2005b) In vitro selection of structure-switching signaling aptamers. Angewandte Chemie-International Edition 44:1061–1065

    CAS  Google Scholar 

  • Oh KJ, Cash KJ, Hugenberg V, Plaxco KW (2007) Peptide beacons: a new design for polypeptide- based optical biosensors. Bioconjugate Chemistry 18:607–609

    PubMed  CAS  Google Scholar 

  • Organero JA, Tormo L, Sanz M, Roshal A, Douhal A (2007) Complexation effect of gamma- cyclodextrin on a hydroxyflavone derivative: formation of excluded and included anions. Journal of Photochemistry and Photobiology A-Chemistry 188:74–82

    CAS  Google Scholar 

  • Oshovsky GV, Reinhoudt DN, Verboom W (2007) Supramolecular chemistry in water. Angewandte Chemie-International Edition 46:2366–2393

    CAS  Google Scholar 

  • O'Sullivan PJ, Burke M, Soini AE, Papkovsky DB (2002) Synthesis and evaluation of phosphorescent oligonucleotide probes for hybridisation assays. Nucleic Acids Research 30:e114

    PubMed  Google Scholar 

  • Ozaki H, Nishihira A, Wakabayashi M, Kuwahara M, Sawai H (2006) Biomolecular sensor based on fluorescence-labeled aptamer. Bioorganic & Medicinal Chemistry Letters 16:4381–4384

    CAS  Google Scholar 

  • Pagliari S, Corradini R, Galaverna G, Sforza S, Dossena A, Montalti M, Prodi L, Zaccheroni N, Marchelli R (2004) Enantioselective fluorescence sensing of amino acids by modified cyclodex- trins: role of the cavity and sensing mechanism. Chemistry-A European Journal 10:2749–2758

    CAS  Google Scholar 

  • Peczuh MW, Hamilton AD (2000) Peptide and protein recognition by designed molecules. Chemical Reviews 100:2479–2493

    PubMed  CAS  Google Scholar 

  • Pflum MKH (2004) Grafting miniature DNA binding proteins. Chemistry & Biology 11:3–4

    CAS  Google Scholar 

  • Proske D, Blank M, Buhmann R, Resch A (2005) Aptamers - basic research, drug development, and clinical applications. Applied Microbiology and Biotechnology 69:367–374

    PubMed  CAS  Google Scholar 

  • Pugh VJ, Hu QS, Pu L (2000) The first dendrimer-based enantioselective fluorescent sensor for the recognition of chiral amino alcohols. Angewandte Chemie-International Edition 39:3638–3641

    Google Scholar 

  • Purrello R, Gurrieri S, Lauceri R (1999) Porphyrin assemblies as chemical sensors. Coordination Chemistry Reviews 192:683–706

    Google Scholar 

  • Quiocho FA, Ledvina PS (1996) Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Molecular Microbiology 20:17–25

    PubMed  CAS  Google Scholar 

  • Rathbone DL, Bains A (2005) Tools for fluorescent molecularly imprinted polymers. Biosensors & Bioelectronics 20:1438–1442

    CAS  Google Scholar 

  • Raymond FR, Ho HA, Peytavi R, Bissonnette L, Boissinot M, Picard FJ, Leclerc M, Bergeron MG (2005) Detection of target DNA using fluorescent cationic polymer and peptide nucleic acid probes on solid support. BMC Biotechnology 5:10

    PubMed  Google Scholar 

  • Renard M, Belkadi L, Hugo N, England P, Altschuh D, Bedouelle H (2002) Knowledge-based design of reagentless fluorescent biosensors from recombinant antibodies. Journal of Molecular Biology 318:429–442

    PubMed  CAS  Google Scholar 

  • Renberg B, Shiroyama I, Engfeldt T, Nygren PA, Karlstrom AE (2005) Affibody protein capture microarrays: synthesis and evaluation of random and directed immobilization of affibody molecules. Analytical Biochemistry 341:334–343

    PubMed  CAS  Google Scholar 

  • Renberg B, Nordin J, Merca A, Uhlen M, Feldwisch J, Nygren PA, Karlstrom AE (2007) Affibody molecules in protein capture microarrays: evaluation of multidomain ligands and different detection formats. Journal of Proteome Research 6:171–179

    PubMed  CAS  Google Scholar 

  • Rodi DJ, Agoston GE, Manon R, Lapcevich R, Green SJ, Makowski L (2001) Identification of small molecule binding sites within proteins using phage display technology. Combinatorial Chemistry & High Throughput Screening 4:553–572

    CAS  Google Scholar 

  • Ronnmark J, Kampf C, Asplund A, Hoiden-Guthenberg I, Wester K, Ponten F, Uhlen M, Nygren PA (2003) Affibody-beta-galactosidase immunoconjugates produced as soluble fusion proteins in the Escherichia coli cytosol. Journal of Immunological Methods 281:149–160

    PubMed  CAS  Google Scholar 

  • Roshal AD, Grigorovich AV, Doroshenko AO, Pivovarenko VG, Demchenko AP (1999) Flavonols as metal-ion chelators: complex formation with Mg2 + and Ba2 + cations in the excited state. Journal of Photochemistry and Photobiology A-Chemistry 127:89–100

    CAS  Google Scholar 

  • Sadhu KK, Bag B, Bharadwaj PK (2007) A multi-receptor fluorescence signaling system exhibiting enhancement selectively in presence of Na(I) and Tl(I) ions. Journal of Photochemistry and Photobiology A-Chemistry 185:231–238

    CAS  Google Scholar 

  • Schulz GE, Schirmer RH (1979) Principles of protein structure. Springer, New York

    Google Scholar 

  • Sellergren B, Andersson LI (2000) Application of imprinted synthetic polymers in binding assay development. Methods 22:92–106

    PubMed  CAS  Google Scholar 

  • Shakeel S, Karim S, Ali A (2006) Peptide nucleic acid (PNA) — a review. Journal of Chemical Technology and Biotechnology 81:892–899

    CAS  Google Scholar 

  • Sillerud LO, Larson RS (2005) Design and structure of peptide and peptidomimetic antagonists of protein-protein interaction. Current Protein & Peptide Science 6:151–169

    CAS  Google Scholar 

  • Singh Y, Dolphin GT, Razkin J, Dumy P (2006) Synthetic peptide templates for molecular recognition: recent advances and applications. Chembiochem 7:1298–1314

    PubMed  CAS  Google Scholar 

  • Socher E, Jarikote DV, Knoll A, Roglin L, Burmeister J, Seitz O (2008) FIT probes: peptide nucleic acid probes with a fluorescent base surrogate enable real-time DNA quantification and single nucleotide polymorphism discovery. Analytical Biochemistry 375:318–330

    PubMed  CAS  Google Scholar 

  • Srivatsan SG, Tor Y (2007) Fluorescent pyrimidine ribonucleotide: synthesis, enzymatic incorporation, and utilization. Journal of the American Chemical Society 129:2044–2053

    PubMed  CAS  Google Scholar 

  • Stadtherr K, Wolf H, Lindner P (2005) An aptamer-based protein biochip. Analytical Chemistry 77:3437–3443

    PubMed  CAS  Google Scholar 

  • Stephenson CJ, Shimizu KD (2007) Colorimetric and fluorometric molecularly imprinted polymer sensors and binding assays. Polymer International 56:482–488

    CAS  Google Scholar 

  • Stojanovic MN, Kolpashchikov DM (2004) Modular aptameric sensors. Journal of the American Chemical Society 126:9266–9270

    PubMed  CAS  Google Scholar 

  • Stojanovic MN, Landry DW (2002) Aptamer-based colorimetric probe for cocaine. Journal of the American Chemical Society 124:9678–9679

    PubMed  CAS  Google Scholar 

  • Stojanovic MN, de Prada P, Landry DW (2001) Aptamer-based folding fluorescent sensor for cocaine. Journal of the American Chemical Society 123:4928–4931

    PubMed  CAS  Google Scholar 

  • Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chemical Reviews 98:1743–1753

    PubMed  CAS  Google Scholar 

  • Thodima V, Pirooznia M, Deng YP (2006) RiboaptDB: a comprehensive database of ribozymes and aptamers. BMC Bioinformatics 7

    Google Scholar 

  • Timmerman P, Beld J, Puijk WC, Meloen RH (2005) Rapid and quantitative cyclization of multiple peptide loops onto synthetic scaffolds for structural mimicry of protein surfaces. Chembiochem 6:821–824

    PubMed  CAS  Google Scholar 

  • Tolosa L, Ge XD, Rao G (2003) Reagentless optical sensing of glutamine using a dual-emitting glutamine-binding protein. Analytical Biochemistry 314:199–205

    PubMed  CAS  Google Scholar 

  • Tombelli S, Minunni A, Mascini A (2005) Analytical applications of aptamers. Biosensors & Bioelectronics 20:2424–2434

    CAS  Google Scholar 

  • Traviesa-Alvarez JM, Sanchez-Barragan I, Costa-Fernandez JM, Pereiro R, Sanz-Medel A (2007) Room temperature phosphorescence optosensing of benzo a pyrene in water using halogenated molecularly imprinted polymers. Analyst 132:218–223

    PubMed  CAS  Google Scholar 

  • Tsou LK, Jain RK, Hamilton AD (2004) Protein surface recognition by porphyrin-based receptors. Journal of Porphyrins and Phthalocyanines 8:141–147

    CAS  Google Scholar 

  • Uchiyama F, Tanaka Y, Minari Y, Toku N (2005) Designing scaffolds of peptides for phage display libraries. Journal of Bioscience and Bioengineering 99:448–456

    PubMed  CAS  Google Scholar 

  • Urraca JL, Moreno-Bondi MC, Orellana G, Sellergren B, Hall AJ (2007) Molecularly imprinted polymers as antibody mimics in automated on-line fluorescent competitive assays. Analytical Chemistry 79:4915–4923

    PubMed  CAS  Google Scholar 

  • Valeur B (2002) Molecular fluorescence. Wiley-VCH, Weinheim Valeur B, Leray I (2007) Ion-responsive supramolecular fluorescent systems based on multi- chromophoric calixarenes: a review. Inorganica Chimica Acta 360:765–774

    Google Scholar 

  • Vogt M, Skerra A (2004) Construction of an artificial receptor protein (“anticalin”) based on the human apolipoprotein D. Chembiochem 5:191–199

    PubMed  CAS  Google Scholar 

  • Weiss GA, Lowman HB (2000) Anticalins versus antibodies: made-to-order binding proteins for small molecules. Chemistry & Biology 7:R177–R184

    CAS  Google Scholar 

  • Wenz G, Han BH, Muller A (2006) Cyclodextrin rotaxanes and polyrotaxanes. Chemical Reviews 106:782–817

    PubMed  CAS  Google Scholar 

  • Wiederstein M, Sippl MJ (2005) Protein sequence randomization: efficient estimation of protein stability using knowledge-based potentials. Journal of Molecular Biology 345:1199–1212

    PubMed  CAS  Google Scholar 

  • Wosnick JH, Swager TM (2004) Enhanced fluorescence quenching in receptor-containing conjugated polymers: a calix 4 arene-containing poly(phenylene ethynylene). Chemical Communications:2744–2745

    Google Scholar 

  • Yang CJ, Jockusch S, Vicens M, Turro NJ, Tan W (2005) Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proceedings of the National Academy of Sciences of the United States of America 102:17278–17283

    PubMed  CAS  Google Scholar 

  • Yang RH, Chan WH, Lee AWM, Xia PF, Zhang HK, Li KA (2003a) A ratiometric fluorescent sensor for Ag-1 with high selectivity and sensitivity. Journal of the American Chemical Society 125:2884–2885

    CAS  Google Scholar 

  • Yang RH, Li KA, Wang KM, Zhao FL, Li N, Liu F (2003b) Porphyrin assembly on beta-cyclo- dextrin for selective sensing and detection of a zinc ion based on the dual emission fluorescence ratio. Analytical Chemistry 75:612–621

    CAS  Google Scholar 

  • Yesylevskyy SO, Klymchenko AS, Demchenko AP (2005) Semi-empirical study of two-color fluorescent dyes based on 3-hydroxychromone. Journal of Molecular Structure-Theochem 755:229–239

    CAS  Google Scholar 

  • Yesylevskyy SO, Kharkyanen VN, Demchenko AP (2006) The change of protein intradomain mobility on ligand binding: is it a commonly observed phenomenon? Biophysical Journal 91:3002–3013

    PubMed  CAS  Google Scholar 

  • Yoshimatsu K, Reimhult K, Krozer A, Mosbach K, Sode K, Ye L (2007) Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: the control of particle size suitable for different analytical applications. Analytica Chimica Acta 584:112–121

    PubMed  CAS  Google Scholar 

  • Zahnd C, Amstutz P, Pluckthun A (2007) Ribosome display: selecting and evolving proteins in vitro that specifically bind to a target. Nature Methods 4:269–279

    PubMed  CAS  Google Scholar 

  • Zhang L, Feng W (2007) Dendritic conjugated polymers. Progress in Chemistry 19:337–349

    CAS  Google Scholar 

  • Zheng GX, Shao Y, Xu B (2006) Synthesis and characterization of polyaniline coated gold nano-particle and its primary application. Acta Chimica Sinica 64:733–737

    CAS  Google Scholar 

  • Zhou H, Baldini L, Hong J, Wilson AJ, Hamilton AD (2006) Pattern recognition of proteins based on an array of functionalized porphyrins. Journal of the American Chemical Society 128:2421–2425

    PubMed  CAS  Google Scholar 

  • Zimmerman SC, Zharov I, Wendland MS, Rakow NA, Suslick KS (2003) Molecular imprinting inside dendrimers. Journal of the American Chemical Society 125:13504–13518

    PubMed  CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

(2009). Recognition Units. In: Demchenko, A.P. (eds) Introduction to Fluorescence Sensing. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9003-5_5

Download citation

Publish with us

Policies and ethics