Skip to main content

Keys to the Increased Use of Host Plant Resistance in Integrated Pest Management

  • Chapter

Abstract

Abstract Host-plant resistance as a management tactic involves both the exploitation of intraspecific variation in genetically based plant resistance to breed crop varieties that support lower populations of herbivores or that better tolerate injury by herbivores and the integration of said varieties with other management tactics such as insecticide applications and biological control. There are several barriers to the increased development and use of resistant cultivars in IPM. Many of these barriers arise from the complex genetic and phenotypic nature of plant resistance. In addition, insufficient attention has been given to the integration of plant resistance with other IPM tactics, and to quantifying the benefits of plant resistance in multi-tactic IPM programs. Three keys to overcoming these barriers are described: increased understanding of the causal bases of plant resistance, increased application of modern genetic tools, and a more quantitative approach to implementing host-plant resistance.

Keywords

  • Host-plant resistance
  • Integrated pest management
  • Causal basis
  • Insecticides
  • Biological control
  • Polygenic
  • Gene-for-gene resistance

This is a preview of subscription content, access via your institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   160.49
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   219.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   219.99
Price includes VAT (Finland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal, A.A. 2005. Future directions in the study of induced plant responses to herbivory. nobreak Entomologia Experimentalis et Applicata 115: 97–105.

    CrossRef  Google Scholar 

  • Agrawal, A.A., Gorski, P.M. and Tallamy, D.W. 1999. Polymorphism in plant defense against herbivory: constitute and induced resistance in Cucumis sativus. Journal of Chemical Ecology 25: 2285–2304.

    CrossRef  CAS  Google Scholar 

  • Akbar, W., Ottea, J.A., Beuzelin, J.M., Reagan, T.E. and Huang, F. 2008. Selection and life history traits of tebufenozide-resistant sugarcane borer (Lepidoptera: Crambidae). Journal of Economic Entomology (accepted EC 08-111).

    Google Scholar 

  • Alam, S.N. and Cohen, M.B. 1998. Durability of brown planthopper, Nilaparvata lugens, resistance in rice variety IR64 in greenhouse selection studies. Entomologia Experimentalis et Applicata 89: 71–78.

    CrossRef  CAS  Google Scholar 

  • Balkema-Boomstra, A.G., Zijlstra, S., Verstappen, F.W.A., Inggamer, H., Mercke, P.E., Jongsma, M.A. and Bouwmeester, H.J. 2002. Role of cucurbitacin C in resistance to spider mite (Tetranychus urticae) in cucumber (Cucumis sativus L.). Journal of Chemical Ecology 29: 225–235.

    CrossRef  Google Scholar 

  • Barone, A. 2004. Molecular marker-assisted selection for potato breeding. American Journal of Potato Research 81: 111–117.

    CrossRef  Google Scholar 

  • Beckers, G.J.M. and Spoel, S.H. 2006. Fine-tuning plant defence signaling: Salicylate versus jasmonate. Plant Biology 8: 1–10.

    CrossRef  PubMed  CAS  Google Scholar 

  • Bonierbale, M.W., Plaisted, R.L., Pineda, O. and Tanksley, S.D. 1994. QTL analysis of trichome-mediated insect resistance in potato. Theoretical and Applied Genetics 87: 973–987.

    CrossRef  CAS  Google Scholar 

  • Bradsher, K. and Martin, A. 2008. Food Chain: World’s Poor Pay Price as Crop Research is Cut. New York Times, May 18, 2008.

    Google Scholar 

  • Brown, J.K.M. 2002. Yield penalties of disease resistance in crops. Current Opinion in Plant Biology 5: 1–6.

    CrossRef  Google Scholar 

  • Buntin, G.D., Ott, S.L. and Johnson, J.W. 1992. Integration of plant resistance, insecticides, and planting date for management of the Hessian fly (Diptera: Cecidomyiidae) in winter wheat. Journal of Economic Entomology 85: 530–538.

    Google Scholar 

  • Campbell, W.V. and Wynne, J.C. 1985. Influence of the insect-resistant peanut cultivar NC 6 on performance of soil insecticides. Journal of Economic Entomology 78: 113–116.

    CAS  Google Scholar 

  • Chen, M.S., Fellers, J.P., Stuart, J.J., Reese, J.C. and Liu, X. 2004. A group of related cDNAs encoding secreted proteins from Hessian fly [Mayetiola destructor (Say)] salivary glands. Insect Molecular Biology 13: 101–108.

    CrossRef  PubMed  CAS  Google Scholar 

  • Cipollini, D. 2004. Stretching the limits of plasticity: Can a plant defend against both competitors and herbivores? Ecology 85: 28–37.

    CrossRef  Google Scholar 

  • Clement, S.L. and Quisenberry, S.S. (eds), 1999. Global Genetic Resources for Insect-Resistant Crops. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Cohen, M.B., Alam, S.N., Medina, E.B. and Bernal, C.C. 1997. Brown planthopper, Nilaparvata lugens, resistance in rice cultivar IR64: Mechanism and role in successful N. lugens management in Central Luzon, Philippines. Entomologia Experimentalis et Applicata 85: 221–229.

    CrossRef  Google Scholar 

  • Cortesero, A.M., Stapel, J.O. and Lewis, W.J. 2000. Understanding and manipulating plant attributes to enhance biological control. Biological Control 17: 35–49.

    CrossRef  Google Scholar 

  • Cuong, N.L., Ben, P.T., Phuong, L.T., Chau, L.M. and Cohen, M.B. 1997. Effect of host plant resistance and insecticide on brown planthopper Nilaparvata lugens (Stal) and predator population development in the Mekong Delta, Vietnam. Crop Protection 16: 707–715.

    CrossRef  Google Scholar 

  • Degenhardt, J., Gershenzon, J., Baldwin, I.T. and Kessler, A. 2003. Attracting friends to feast on foes: Engineering terpene emission to make crop plants more attractive to herbivore enemies. Current Opinion in Biotechnology 14: 169–176.

    CrossRef  PubMed  CAS  Google Scholar 

  • Eigenbrode, S.D. and Trumble, J.T. 1994. Host plant resistance to insects in integrated pest management in vegetable crops. Journal of Agricultural Entomology 11: 201–225.

    Google Scholar 

  • Flanders, K.L., Hawkes, J.G., Radcliffe, E.B. and Lauer, F.I. 1992. Insect resistance in potatoes: Sources, evolutionary relationship, morphological and chemical defences, and ecogeographical associations. Euphytica 61: 83–111.

    CrossRef  CAS  Google Scholar 

  • Goggin, F.L., Jia, L., Shah, G., Williamson, V.M. and Ullman, D.E. 2006. The tomato Mi-1.2 herbivore resistance gene functions to confer nematode resistance but not aphid resistance in eggplant. Molecular Plant-Microbe Interactions 19: 383–388.

    CrossRef  PubMed  CAS  Google Scholar 

  • Gregory, P., Sinden, S.L., Osman, S.F., Tingey, W.M. and Chessin, D.A. 1981. Glycoalkaloids of wild, tuber-bearing Solanum species. Agricultural and Food Chemistry 29: 1212–1215.

    CrossRef  CAS  Google Scholar 

  • Hansen, J.L., Miller-Garvin, J.E., Waldron, J.K. and Viands, D.R. 2002. Comparison of potato leafhopper-resistant and susceptible alfalfa in New York. Crop Science 42: 1155–1163.

    Google Scholar 

  • Harris, M.O., Stuart, J.J., Mohan, M., Nair, S., Lamb, R.J. and Rohfritsch, O. 2003. Grasses and gall midges: Plant defense and insect adaptation. Annual Review of Entomology 48: 549–577.

    CrossRef  PubMed  CAS  Google Scholar 

  • Heinrichs, E.A. 1986. Perspectives and directions for the continued development of insect-resistant rice varieties. Agriculture, Ecosystems and Environment 18: 9–36.

    CrossRef  Google Scholar 

  • Heinrichs, E.A. and Quisenberry, S.S. 1999. Germplasm evaluation and utilization for insect resistance in rice. In: Clement, S.L. and Quisenberry, S.S. (eds), Global Genetic Resources for Insect-Resistant Crops. CRC Press, Boca Raton, Florida, pp. 3–24.

    Google Scholar 

  • Hesler, L.S. and Dashiell, K.E. 2007. Resistance to Aphis glycines (Hemiptera: Aphididae) in various soybean lines under controlled laboratory conditions. Journal of Economic Entomology 100: 1464–1469.

    CrossRef  PubMed  Google Scholar 

  • Hochwender, C.G., Janson, E.M., Cha, D.H. and Fritz, R.S. 2005. Community structure of insect herbivores in a hybrid system: Examining the effects of browsing damage and plant genetic variation. Ecological Entomology 30: 170–175.

    CrossRef  Google Scholar 

  • Huberty, A.F. and Denno, R.F. 2004. Plant water stress and its consequences for herbivorous insects: A new synthesis. Ecology 85: 1383–1398.

    CrossRef  Google Scholar 

  • Jena K.K., Jeung J.U., Lee J.H., Choi H.C. and Brar D.S. 2006. High-resolution mapping of a new brown planthopper (BPH) resistance gene, Bph18(t), and marker-assisted selection for BPH resistance in rice (Oryza sativa L.). Theoretical and Applied Genetics 112: 288–297.

    CrossRef  PubMed  CAS  Google Scholar 

  • Kalazich, J.G. and Plaisted, R.L. 1991. Association between trichome characters and agronomic traits in Solanum tuberosum (L.) X S. berthaultii (Hawkes) hybrids. American Potato Journal 68: 833–847.

    CrossRef  Google Scholar 

  • Kaloshian, I. 2004. Gene-for-gene disease resistance: Bridging insect pest and pathogen defense. Journal of Chemical Ecology 30: 2419–2438.

    CrossRef  PubMed  CAS  Google Scholar 

  • Karban, R., Agrawal, A.A. and Mangel, M. 1997. The benefits of induced defenses against herbivores. Ecology 78: 1351–1355.

    Google Scholar 

  • Kennedy, G.G. and Barbour, J.D. 1992. Resistance variation in natural and managed systems. In: Fritz, R.S. and Simms, E.S. (eds), Plant Resistance to Herbivores and Pathogens: Ecology, Evolution, and Genetics. University of Chicago Press, Chicago, IL, pp. 13–41.

    Google Scholar 

  • Kessler, A. and Baldwin, I.T. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291: 2141–2144.

    CrossRef  PubMed  CAS  Google Scholar 

  • Kogan, M. 1986. Plant defense strategies and host-plant resistance. In: Kogan, M. (Ed.). Ecological Theory and Integrated Pest Management Practice. John Wiley and Sons, New York, USA, pp. 83–134.

    Google Scholar 

  • Lambert, L., and Tyler, J. 1999. In: Wiseman, B.R. and Webster, J.A. (eds), Economic, Environmental, and Social Benefits of Resistance in Field Crops (Thomas Say Publications in Entomology: Proceedings). Entomological Society of America, Lanham, MD, pp. 131–148.

    Google Scholar 

  • Leadbeater, A. and Staub, T. 2007. Exploitation of induced resistance: A commercial perspective. In: Walters, D., Newton, A. and Lyon, G. (eds), Induced Resistance for Plant Defence: A Sustainable Approach to Crop Protection, pp. 229–242.

    Google Scholar 

  • Mao, Y.-B., Cai, W.-J., Wang, J.-W., Hong, G.-J., Tao, X-Y., Wang, L.-J., Huang, Y.-P. and Chen, X.-Y. 2007. Silencing a cotton bollworm P450 monooxygenase gene by plant – meditated RNAi impairs larval tolerance of gossypol. Nature Biotechnology 25: 1307–1313.

    CrossRef  PubMed  CAS  Google Scholar 

  • Marquis, R.J. 1992. The selective impact of herbivores. In: Fritz, R. and Simms, E.L. (eds), Plant Resistance to Herbivores and Pathogens: Ecology, Evolution, and Genetics. The University of Chicago Press, Chicago, IL.

    Google Scholar 

  • Maxwell, F.G. and Jennings, P.R. (eds), 1980. Breeding Plants Resistant to Insects. John Wiley and Sons, New York.

    Google Scholar 

  • Narvel, J.M., Walker, D.R., Rector, B.G., All, J.N., Parrott, W.A., Boerma, H.R. 2001. A retrospective DNA marker assessment of the development of insect resistant soybean. Crop Science 41: 1931–1939.

    CrossRef  CAS  Google Scholar 

  • Nombela, G., Williamson, V. and Muñiz, M. 2003. The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Molecular Plant Microbe Interactions 16: 645–649.

    CrossRef  CAS  Google Scholar 

  • Nunez-Farfan, J., Fornoni, J. and Valverde, P.L. 2007. The evolution of resistance and tolerance to herbivores. Annual Review of Ecology and Systematics 38: 541–566.

    CrossRef  Google Scholar 

  • Painter, R.H. 1951. Insect Resistance in Crop Plants. (Paperback edition, 1968). The University Press of Kansas, Lawrence, KS.

    Google Scholar 

  • Peterson, R.K.D. and Higley, L.G. (eds), 2001. Biotic Stress and Yield Loss. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Pitrat, M. and Lecoq, H. 1982. Relations génétiques entre les résistances par non-acceptation et par antibiose du melon à Aphis gossypii: recherche de liaisons avec d’autres gènes. Agronomie 2: 503–508.

    CrossRef  Google Scholar 

  • Posey, F.R., White, W.H., Reay-Jones, F.P.F., Gravois, K., Salassi, M.E., Leonard, B.R. and Reagan, T.E. 2006. Sugarcane borer (Lepidoptera: Crambidae) management threshold assessment on four sugarcane cultivars. Journal of Economic Entomology 99: 966–971.

    CrossRef  PubMed  CAS  Google Scholar 

  • Preston C.A., Lewandowski, C., Enyedi A.J. and Baldwin I.T. 1999. Tobacco mosaic virus inoculation inhibits wound-induced jasmonic acid-mediated responses within but not between plants. Planta 209: 87–89.

    CrossRef  PubMed  CAS  Google Scholar 

  • Purrington, C.B. 2000. Costs of resistance. Current Opinion in Plant Biology 3: 305–308.

    CrossRef  PubMed  CAS  Google Scholar 

  • Rasmann, S., Kollner, T.G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., Gershenzon, J. and Turlings, C.J. 2005. Recruitment of entomopathogenic nematodes by insect – damaged maize roots. Nature 434: 732–737.

    CrossRef  PubMed  CAS  Google Scholar 

  • Roberts, J.J., Foster, J.E. and Patterson, F.L. 1988. The Purdue-USDA small grain improvement program – a model of research productivity. Journal of Production Agriculture 1: 239–241.

    Google Scholar 

  • Roberts, P.A. and Thomason, I.J. 1986. Variability in reproduction of isolates of Meloidogyne incognita and M. javanica on resistant tomato genotypes. Plant Disease 70: 547–551.

    CrossRef  Google Scholar 

  • Robinson, A.F., Bell, A.A., Dighe, N.D., Menz, M.A., Nichols, R.L. and Stelly, D.M. 2007. Introgression of resistance to nematode Rotylenchulus reniformis into upland cotton (Gossypium hirsutum) from Gossypium longicalyx. Crop Science 47: 1865–1867.

    CrossRef  Google Scholar 

  • Rodriguez-Saona, C. and Thaler, J.S. 2005. The jasmonate pathway alters herbivore feeding behavior: consequences for plant defenses. Entomologia Experimentalis et Applicata 115: 125–134.

    CrossRef  CAS  Google Scholar 

  • Rossi, M., Goggin, F.L., Milligan, S.B., Kaloshian, I., Ullman, D.E. and Willianson, V.M. 1998. The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proceedings of the National Academy of Science, USA 95: 9750–9754.

    Google Scholar 

  • Sadasivam, S. and Thayumanavan, B. 2003. Molecular Host Plant Resistance to Pests. Marcel Dekker, Inc., New York.

    Google Scholar 

  • Schmelz, E.A., Carroll, M.J., LeClere, S., Phipps, S.M., Meredith, J., Chourey, P.S., Alborn, H.T. and Teal, P.E.A. 2006. Fragments of ATP synthase mediate plant perception of insect attack. Proceedings of the national Academy of Science, USA 103: 8894–8899.

    Google Scholar 

  • Simms, E.L. 1992. Costs of plant resistance to herbivory. In: Fritz, R. and Simms, E.L. (eds), Plant Resistance to Herbivores and Pathogens: Ecology, Evolution, and Genetics. The University of Chicago Press, Chicago, IL, pp. 392–425.

    Google Scholar 

  • Simms, E.L. and Rausher, M.D. 1992. Uses of quantitative genetics for studying the evolution of plant resistance. In: Fritz, R. and Simms, E.L. (eds), Plant Resistance to Herbivores and Pathogens: Ecology, Evolution, and Genetics. The University of Chicago Press, Chicago, IL, pp. 42–68.

    Google Scholar 

  • Smith, C.M. 2005. Plant Resistance to Arthropods: Molecular and Conventional Approaches. Springer, Dordrecht 423pp.

    CrossRef  Google Scholar 

  • Smith, C.M. and Quisenberry, S.S. 1994. The value and use of plant resistance to insects in integrated crop management. Introduction to Nelson, R.H. memorial symposium. Journal of Agricultural Entomology 11: 189–190.

    Google Scholar 

  • Stout, M.J. 2007. Types and mechanisms of rapidly-induced resistance to herbivorous arthropods. In Walters, D., Newton, A. and Lyon, G. (eds), Induced Resistance for Plant Defence: A Sustainable Approach to Crop Protection, pp. 89–104.

    Google Scholar 

  • Stout, M.J., Zehnder, G.W. and Baur, M.E. 2002. Potential for the use of elicitors of plant resistance in arthropod management programs. Archives of Insect Biochemistry and Physiology 51: 222–235.

    CrossRef  PubMed  CAS  Google Scholar 

  • Strauss, S.Y., Rudgers, J.A., Lau, J.A. and Irwin, R.E. 2002. Direct and ecological costs of resistance to herbivory. Trends in Ecology and Evolution 17: 278–285.

    CrossRef  Google Scholar 

  • Teetes, G.L. 1994. Adjusting crop management recommendations for insect-resistant crop varieties. Journal of Agricultural Entomology 11: 191–200.

    Google Scholar 

  • Thaler, J.S., Fidantsef, A.L., Duffey, S.S. and Bostock, R.M. 1999. Trade-offs in plant defense against pathogens and herbivores: A field demonstration of chemical elicitors of induced resistance. Journal of Chemical Ecology 25: 1597–1609.

    CrossRef  CAS  Google Scholar 

  • Thomas, M.B. 1999. Ecological approaches and the development of “truly integrated” pest management. Proceedings of the National Academy of Science, USA 96: 5944–5951.

    Google Scholar 

  • Urwin, P.E., Green, J. and Atkinson, H.J. 2003. Expression of plant cystatin confers partial resistance to Globodera, full resistance is achieved by pyramiding a cystatin with natural resistacnce. Molecular Breeding 12: 263–269.

    CrossRef  CAS  Google Scholar 

  • Walters, D. and Heil, M. 2007. Costs and trade-offs associated with induced resistance. Physiological and Molecular Plant Pathology 71: 3–17.

    CrossRef  CAS  Google Scholar 

  • Webster, J.A. and Kenkel, P. 1999. Benefits of managing small-grain pests with plant resistance. In: Wiseman, B.R. and Webster, J.A. (eds), Economic, Environmental, and Social Benefits of Resistance in Field Crops (Thomas Say Publications in Entomology: Proceedings). Entomological Society of America, Lanham, MD, pp. 87–114.

    Google Scholar 

  • Wiseman, B.R. 1994. Plant resistance to insects in integrated pest management. Plant Disease 78: 927–932.

    Google Scholar 

  • Wiseman, B.R. 1999. Successes in plant resistance to insects. In: Wiseman, B.R. and Webster, J.A. (eds). Economic, Environmental, and Social Benefits of Resistance in Field Crops (Thomas Say Publications in Entomology: Proceedings). Entomological Society of America, Lanham, MD, pp. 3–15.

    Google Scholar 

  • Wiseman, B.R. and Webster, J.A. (eds), 1999. Economic, Environmental, and Social Benefits of Resistance in Field Crops (Thomas Say Publications in Entomology: Proceedings). Entomological Society of America, Lanham, MD.

    Google Scholar 

  • Zhang, C.L., Xu, D.C., Jiang, X.C., Zhou, Y., Cui, J., Zhang, C.X., Chen, D.F., Fowler, M.R., Elliott, M.C., Scott, N.W., Dewar, A.M. and Slater, A. 2008. Genetic approaches to sustainable pest management in sugar beet (Beta vulgaris). Annals of Applied Biology 152: 143–156.

    CrossRef  CAS  Google Scholar 

  • Zhu, S., Walker, D.R., Boerma, H.R., All, J.N. and Parrott W.A.. 2008. Effects of defoliating insect resistance QTLs and a cry1Ac transgene in soybean near-isogenic lines. Theoretical and Applied Genetics 116: 455–463.

    CrossRef  PubMed  CAS  Google Scholar 

  • Zitnak, A. and Johnston, G.R. 1970. Glycoalkaloid content of B5141-6 potatoes. American Potato Journal 47: 256–260.

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Stout .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Stout, M., Davis, J. (2009). Keys to the Increased Use of Host Plant Resistance in Integrated Pest Management. In: Peshin, R., Dhawan, A.K. (eds) Integrated Pest Management: Innovation-Development Process. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8992-3_7

Download citation