Skip to main content
  • 484 Accesses

Crystal habit origin in solutions and relative kinetic processes widely used for genetic reconstructions and growth mechanism interpretations are sketched. Many-sided experimental data for fluorite, yttrium-iron garnet, potassium dichromate, sodium chlorate, and some other substances are presented. Stationary forms of faceting are analyzed in terms of the elaborated structural-chemical model. The model emphasizes on processes within adsorption layers that open possibilities to explain and predict the habit change with conditions in complex solutions. Non-stationary growth conditions cause striated pseudofaces of unusual orientation as well as multi-headed and multi-edged shapes. Anomalies of crystal growth and metal electrochemical reduction appearing in abrupt kinetic acceleration in certain temperature ranges, as well as growth acceleration under infrared radiation are related to resonance violation of the solution structure and new experimental method of attack molecular processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramovich YuM, NechaevYuA (1960) Autigeneous fluorite in Kungur sedimentary rocks of the Perm side of the Urals. Doklady Acad Sci USSR 135:2:414–415 (Russ.)

    Google Scholar 

  • Aliev RM, Mirzoeva FR (1971) On the presence and crystallography features of fluorite of the Gushchin deposit. Doklady Acad Sci Azerbaijan SSR 27:1:47–49 (Russ.)

    Google Scholar 

  • Arkhipchuk RZ (1971) Habit evolution of some minerals in fluorite deposits of the Western Transbaikalia. In: Mineralogy and Mineralogical Crystallography. Ed Sverdlovsk Mining Institute, Sverdlovsk (Russ.) Please, change ‘Arkhipchuk 1966’ to ‘Arkhipchuk 1971’ in the note 13 to Table 7.3, page 267

    Google Scholar 

  • Arkhipchuk RZ, Lokerman AA (1966) New data for the dependence of fluorite crystal habit on the formation conditions. Miner Collected Papers Lvov Univ 20:4:602–605 (Russ.)

    Google Scholar 

  • Arkhipchuk RZ, Vovk PK (1971) Crystal morphology of fluorite from the Darasun deposit. In: Mineralogy and Mineralogical Crystallography. Ed Sverdlovsk Mining Institute, Sverdlovsk (Russ.)

    Google Scholar 

  • Artem'ev DN (1914) Method of crystallization of spheres and its application for studying forms and structure of crystalline matter. Petrograd [See also In: Popoff B (ed) Travaix de la Société Impériale des Naturalistes de Pétrograde. Vol. XXXVII, livr. 5. Section de Géologie et de Minéralogie. Birkenfeld, Petrograd 1915] (Russ.)

    Google Scholar 

  • Askhabov AM (1979) Regeneration of crystals. Nauka, Leningrad (Russ.)

    Google Scholar 

  • Askhabov AM (2002) Clusters of the “hidden phase” (quatarones) and their role in the processes of crystal nucleation and growth. In: Kovalchuk MV (ed) Problems of modern crystallography: physics of crystallization. To the G.G. Laemmlein's centenary. Fizmatlit, Moscow (Russ.)

    Google Scholar 

  • Askhabov AM (2004) Cluster (quatarone) self-organization of the matter at nanolevel and formation of crystalline and non-crystalline materials. Zapiski Russ Miner Obsh 4:108–123 (Russ.)

    Google Scholar 

  • Askhabov AM (2006) Cluster (quatarone) mechanism of formation of liquid water. Zapiski Russ Miner Obsh 1:123–129 (Russ.)

    Google Scholar 

  • Avdonin VN (1968) Fluorite in Carbonian limestones of the East side of the Urals. Proc Inst Geol Geochem Ural Branch Acad Sci USSR: Miner Collected Papers 8:71–76 (Russ.)

    Google Scholar 

  • Balitskii VS, Ozerova NA, Komova VV (1983) Hydrothermal crystallization and typomorphic features of zinnabar and antimonite. Nedra, Moscow (Russ.)

    Google Scholar 

  • Barabanov VF (1959) Fluorite from the Bukuka volframite deposit (East Transbaikalia). Zapiski Vsesoyuz Miner Obsh 88:2:129–136 (Russ.)

    Google Scholar 

  • Becqerel M (1874) Dixieme memoire zur la formation de diversis substances cristallisces dans les espases kapillaires. Compt Rend 78:1081

    Google Scholar 

  • Bienfait M, Boistelle R, Kern R (1964) Théorie des morphodromes; applications aux formes de croissance de NaCl en solution aquese en présence d'impuretés. C. R. Acad. Sci. 258:3:880–883

    Google Scholar 

  • Bocharov SN (2004) Kinetic anomalies of crystal growth as indicators of structure transformations in the solution Vestn. St. Peter. Univ. Ser. 7 Geol Geogr 3:16–21

    Google Scholar 

  • Bocharov SN, Glikin AÉ (2008) Kinetic anomalies of crystal growth: development of methodical approaches and interpretations. Crystallogr Reports 53:1:147–153

    Article  ADS  Google Scholar 

  • Bogoyavlenskaya I V, Blyakhman EI (1968) Temperature of fluorite formation of the Irbin depos-ite Proc Res Inst Synthesis Mineral Row Materials: Investigation of Mineral Forming Solutions 11:228 (Russ.)

    Google Scholar 

  • Bravais A (1866) Etudes cristallographiques. Gauthier-Villars, Paris

    Google Scholar 

  • Buckley HE (1951) Crystal growth. New York, London

    Google Scholar 

  • Bulakh AG (1981) Graphics of crystals. Nedra, Moscow (Russ.)

    Google Scholar 

  • Bunn CW (1933) Adsorption, oriented overgrowth and mixed crystal formation. Proc Roy Soc (London) A141:567–593

    ADS  Google Scholar 

  • Bushinskii GI (1936) On the fluorite origin in sedimentary rocks. Izvestia Acad Sci USSR, ser geol 5:775–779 (Russ.)

    Google Scholar 

  • Bystrom A, Wilhelmi KA (1951) The crystal structure of (NH4)2Cr2O7. Acta Chem Scand 5:1003–1010

    Article  Google Scholar 

  • Chernov AA (1984) Processes of crystallization. In: Vainshtein BK, Chernov AA, Shuvalou LA (eds) Modern Crystallography III, Crystal Growth. Springer, Berlin

    Google Scholar 

  • Chernov AA, Sipyagin VV (1976) Ordering the solution films on the crystal surfaces and growth of crystals. In: GI Distler, Pyu Butyagin (eds) Active surface of solids. Nauka, Moscow (Russ.)

    Google Scholar 

  • Chernov AA, Sipyagin VV (1980) Peculiarities in crystal growth from aqueous solutions connected with their structures. In: E. Kaldis (ed) Current topics in materials science, Vol. 5. North-Holland, Amsterdam/New York/Oxford

    Google Scholar 

  • Chizhov MK, Petrov TG, Glikin AE (1973) On the possible way of environment influence on the fluorite crystal habits. In: Frank-Kamenetskii VA (ed) Crystallography and crystallochemistry 2. Leningrad State University, Leningrad (Russ.)

    Google Scholar 

  • Dalgaard GAP, Hazell AC, Hazell RG (1974) The crystal structure of ammonium dichromate, (NH4)2Cr2O7. Acta Chem Scand A28:5:541–545

    Article  Google Scholar 

  • Dolivo-Dobrovol'skii VV (1968) On the energy calculations of mineral crystallization sequences. Zapiski Vsesoyuz Miner Obsh 4:508–510 (Russ.)

    Google Scholar 

  • Dolivo-Dobrovol'skii VV (1973) On correlation between a so-called structural looseness of minerals and interatomic distances in crystals. Zapiski Vsesoyuz Miner Obsh 6:730–735 (Russ.)

    Google Scholar 

  • Donnay JDH, Harker D (1937) A new law of crystal morphology extending the law of Bravais. Amer Miner 22:5:446–467

    Google Scholar 

  • Dymkov YuM (1957) Fluorite crystals passed skeleton growth stage. Proc Miner Museum Acad Sci USSR 8:146–150 (Russ.)

    Google Scholar 

  • Ermakov NP (1948) Use of defects in fluorite crystals for investigating mineral natural history. Miner Collected Papers Lvov Geol Soc 2:53–74 (Russ.)

    Google Scholar 

  • Evzikova NZ (1958) On a question on changing the habit of mineral crystals in the process of their growth. Zapiski Vsesoyuz Miner Obsh 6:647–656. (Russ.)

    Google Scholar 

  • Evzikova NZ (1959) Notes to the paper by V.F.Barabanov “Fluorite from the Bukuka volframite deposit (East Transbaikalia)”. Zapiski Vsesoyuz Miner Obsh 88:5:612–614 (Russ.)

    Google Scholar 

  • Evzikova NZ (1965) The principles of structural and geometric analysis of crystal faces. Zapiski Vsesoyuz Miner Obsh 2:129–142 (Russ.)

    Google Scholar 

  • Evzikova NZ (1983) The problem of mineralogical interpretation of crystal forms. Zapiski Vsesoyuz Miner Obsh 1:112–117 (Russ.)

    Google Scholar 

  • Evzikova NZ (1984) Exploratory crystal morphology. Nedra. Moscow.

    Google Scholar 

  • Faiziev AR (1973) On the fluorite morphology at the Ak-Jilga deposit (East Pamir). Zapiski Vsesoyuz Miner Obsh 102:6:685 (Russ.)

    Google Scholar 

  • Faiziev AR (1978) Crystallomorphology of fluorite from deposits of Central Tajikistan. In: Rundkvist DV, Marin YuB (eds) Minerals and mineral associations. Nauka, Leningrad (Russ.)

    Google Scholar 

  • Frank-Kamenetskii VA, Pavlishin VI, Yushkin NP, et al. (1987) Main results and tasks of minera-logical crystallography. Miner Zhurn 9:1:7–15 (Russ.)

    Google Scholar 

  • Franke VD (1986) Temperature anomalies of growth rates of FeCl2 4H2O crystals in solutions containing hydrochloric acid. In: Frank-Kamenetskii VA (ed) Aspects of genetic and structural crystallography. Leningrad Society of Naturalists, Leningrad (Proc Leningrad Soc Naturalists 79:2:131–138) (Russ.)

    Google Scholar 

  • Franke VD, Punin YuO (1972) Investigation of viscosity of potassium chloride solutions in the region of the phase transition in solution In: Frank-Kamenetskii VA (ed) Crystallography and crystallochemistry. Leningrad State University, Leningrad (Russ.)

    Google Scholar 

  • Friedel, G. (1904). Etude sur les groupements cristallins. Extrait du Bullettin de la Société de l'Industrie minérale, QuatriÈme série, Tomes III e I V. Saint-Etienne, Société de l'imprimerie ThÈolier J. Thomas et C., 485 pp.

    Google Scholar 

  • Ganz E (1936) Über dem Absorptionspektrum von wässerigen Lösungen 0.70–0.90 μ. Zs Phys Chem (Leipzig) Abt B 33:163–178

    Google Scholar 

  • Ganz E (1937) Absorption spectra of aqueous solutions between 0.70 and 0.90 μ // Zs. Phys. Chem. (Leipzig) Abt B 35:1–10

    ADS  Google Scholar 

  • Gendelev SSh (1961) Morphological classification of crystal growth striae. Zapiski Vsesoyuz Miner Obsh 6:629–636 (Russ.)

    Google Scholar 

  • Gendelev SSh (1963) Face morphology of crystals of yttrium-iron garnet. Kristallografia 3:431–436 (Russ.)

    Google Scholar 

  • Glazov AI (1981) Methods of crystal morphometry. Nedra, Leningrad (Russ.)

    Google Scholar 

  • Glazov AI, Glikin AE (1981) Necessary comments to the publication Problem of genetic interpretation of crystal habit. Zapiski Vsesoyuz Miner Obsh 2:252–254 (Russ.)

    Google Scholar 

  • Glazov AI, Glikin AE (1983) On some methodological aspects of investigations of crystal habits. Zapiski Vsesoyuz Miner Obsh 3:372–376 (Russ.)

    Google Scholar 

  • Glikin AE (1976) Composition of a heating medium as a factor of crystallization process. Kristallografiya 21:3:622–623 (Russ.)

    Google Scholar 

  • Glikin AE (1978) Development and grounds for a structural-chemical evaluation of influence of the medium components upon the crystal faceting. PhD thesis. Leningrad State University, Leningrad (Russ.)

    Google Scholar 

  • Glikin AE (1981) Effect of flux components on CaF2 crystal habit. J. Cryst. Growth 52:98–103

    Article  ADS  Google Scholar 

  • Glikin AE (1982) Methods for evaluation of solution supersaturation in examinations of the crystal typomorphism. In: Frank-Kamenetskii (ed) Crystallography and crystallochemistry 4. Leningrad State University, Leningrad (Russ.)

    Google Scholar 

  • Glikin AE (1995) Crystallogenesis and geological-mineralogical sciences — coordination problems (by example of metasomatism phenomena). Zapiski Vsesoyuz Miner Obsh 4:116–125 (Russ.)

    Google Scholar 

  • Glikin AE (1996) The physicochemical aspect of the unsteady state of metasomatic crystal production. Geochem Intern 33:8:117–128 (Russ.)

    Google Scholar 

  • Glikin AE, Glazov AI (1979) Problem of genetic interpretation of the crystal habit. Zapiski Vsesoyuz Miner Obsh 5:536–551 (Russ.)

    Google Scholar 

  • Glikin AE, Glazov AI (1983) Rational and discussional in the problem of genetic interpretation of the crystal habits. In: Yushkin NP (ed) New ideas in genetic mineralogy. Nauka, Leningrad (Russ.)

    Google Scholar 

  • Glikin AE, Petrov TG (1966) Experimental investigation of growth habits of fluorite crystals in hydrothermal conditions. In: Lasarenko EK (ed) Collected Miner Papers Lvov Geol Soc 20:3:443–446 (Russ.)

    Google Scholar 

  • Glikin AE, Nikolaeva VP, Artamonova OI (1974) A method for growing monocrystals of potassium biphthalate. Authorship certificate 421355. Bull Invent 12 (Russ.)

    Google Scholar 

  • Glikin AE, Petrov TG, Boldyreva OM (1976) On the influence of light upon crystallization of NaClO3 from aqueous solutions. Kristallografiya 21:1:225–226 (Russ.)

    Google Scholar 

  • Glikin AE, Nikolaeva VP, Petrov TG (1979) Crystallization of potassium biphthalate from neutral and alkaline aqueous solutions. In: Smirnov YuM (ed) Physics of crystallization. Kalinin State University, Kalinin (Russ.)

    Google Scholar 

  • Glikin AE, Sipyagin VV, Punin YuO (1982) On the influence of supersaturation upon behavior of anomalies of crystal growth rates. In: Frank-Kamenetskii (ed) Crystallography and crystallo-chemistry 4. Leningrad State University, Leningrad (Russ.)

    Google Scholar 

  • Glikin AE, Franke VD, Marina EYu et al. (1994) Crystallochemical aspects of ammonium dichro-mate morphology. Vestnik St. Petersburg State Univ (ser 4) 2:11:113–115 (Russ.)

    Google Scholar 

  • Glikin AE, Kiryanova EV, Sinai MYu et al. (2002) To the problem of crystal morphogenesis in solutions. In: Kovalchuk MV (ed) Problems of modern crystallography: physics of crystallization. To the G. G. Laemmlein's centenary. Fizmatlit, Moscow (Russ.)

    Google Scholar 

  • Glikin AE, Bocharov SN, Kiryanova EV et al. (2003) Growth rate anomalies and faceting of sodium chlorate crystals. Zapiski Vsesoyuz Miner Obsh 2:99–107 (Russ.)

    Google Scholar 

  • Groth P (1906) Chemische Kristallographie 1. Verlag von Whilhelm Engelmann, Leipzig

    Google Scholar 

  • Hartman P (1963) Crystal form and crystal structure. In: Fox D et al. (eds) Physics and chemistry of the organic solid state, Vol. 1. Interscience, New York.

    Google Scholar 

  • Hartman P (1974) On the crystal habit of fluorite. In: Aleksiev. E, Mincheva-Stefanova I, Radonova TG (eds) Mineral genesis. Publishing House of the Bulgarian Academy of Science. Sofia.

    Google Scholar 

  • Hartman P, Perdok WG (1955a) On the relation between structure and morphology of crystals 1. Acta Cryst 8:1:49–52

    Article  Google Scholar 

  • Hartman P, Perdok WG (1955b) On the relation between structure and morphology of crystals 2. Acta Cryst 8:9:521–529

    Article  Google Scholar 

  • Hartman P, Perdok WG (1956) An interpretation of the law of Donnay and Harker. Amer Miner 41:5–6

    Google Scholar 

  • Haüy RJ (1801) Trate de mineralogie. Chez Louis Paris

    Google Scholar 

  • Holzgang F (1930) Zur Morphologie von Fluorit, Scheelit und Brookit. Schweiz Min Petr Mitt 10:374–476

    Google Scholar 

  • Honigman B (1958) Gleichgewichts- und Wachstumformen von Kristallen. Dr. Dietrich Steinkoppf Verlag, Darmstadt.

    Google Scholar 

  • ICPDF (1999) Power Diffraction File International Center for Diffraction Data, Swarthmore Pennsylvania, USA

    Google Scholar 

  • Ikornikova NYu. (1975) Hydrothermal synthesis of crystals in chloride systems. Nauka, Moscow (Russ.)

    Google Scholar 

  • Kalb G (1923) Kristalltracht, Vorkommen und Bildungstemperatur der Mineralien. Cbl. Miner. Geol., Paläontol 11:23

    Google Scholar 

  • Kasatkin AP (1966) Influence of light upon growth of NaBrO3 crystals. Kristallografiya 11:2:328–330 (Russ.)

    Google Scholar 

  • Kasatkin IA, Glikin AE, Grunskii OS (1995) Multi-headed (multi-edged) and parallel-block structures of crystals resulting from their growth in non-stationary conditions. In: Geology 2. Tikhonov AN (ed) Moscow State University, Moscow (Russ.)

    Google Scholar 

  • Kazakov AV, Sokolova EI (1950) Conditions of fluorite formation in sedimentary rocks. Proc Inst Geol Soc Acad Sci USSR, ser geol 114:40:22–64 (Russ.)

    Google Scholar 

  • Kern R (1968) Croissance cristalline et adsorption. Bull. Soc. Franc. Mineral. Cristallogr. 91:3:247–266.

    Google Scholar 

  • Kibalczyc W, Kolasinski W (1977) Badanie liniowej prędkości wzrostu krystałów KDP. Zesk nauk Politech Łódź 271:51–62 (Polish)

    Google Scholar 

  • Kiryanova EV (2003) New effects of crystal-solution phase equilibria in a model system NaNO3-H2O. J Cryst Growth 253:1–4:452–459

    Article  ADS  Google Scholar 

  • Kiryanova E V, Glikin AE (1986) Regularities of crystal morphology of synthetic fluorite. Zapiski Vsesoyuz Miner Obsh 2:226–234 (Russ.)

    Google Scholar 

  • Kiryanova E V, Glikin AE (1999) The laws of fluorite and calcite habit formation in terms of the morphogenetic structural-chemical concept. J Cryst Growth 198/199:697–703

    Article  Google Scholar 

  • Kiryanova EV, Glikin AE, Kazitsyna OYu (1984) Acid-alkaline influence of a medium upon the fluorite crystal habit (in the course of low-temperature mineral formation). Zapiski Vsesoyuz Miner Obsh 5:628–632 (Russ.)

    Google Scholar 

  • Kleber W (1955/1956) Über Hypomorphie. Wiss Zs Humboldt-Univ Berlin, Math-Natur R 5:1–13

    Google Scholar 

  • Kleber W (1960) Hypermorphie. Neues Jahrb Miner 94:2

    Google Scholar 

  • Kleber W, Ickert L, Ahrens E (1967) Ein Beitrag zur Epitaxie von Alkalihalogeniden auf Calcium und Bariumfluorid. Krist und Techn 2:1:47–54

    Article  Google Scholar 

  • Korytov FYa (1972) Shape and color of fluorite from Transbaikalia fluorite deposits. In: Typomorphism of minerals and its practical significance. Nedra, Moscow (Russ.)

    Google Scholar 

  • Kostov I, Kostov RI (1999) Crystal habit of minerals. Academy Publishing House & Pensoft Publishing (Bulgarian Academic Monographs 1), Sofia

    Google Scholar 

  • Kozlova OG, Kharitonov YuA, Belov NV (1979) Hypomorphy and hyperpermorphy. Doklady Acad Sci USSR 247:1:100–106 (Russ.)

    Google Scholar 

  • Krastanov L, Stranski I (1938) Über die Kristallisation von Alkalihalogenidkristallen auf Fluorit. Zs. Krist Bd 99:5:444–451

    Google Scholar 

  • Kukushkina OA, Pleskova MA, Simonova LI (1976) Typomorphism of accessory fluorite from some granite massifs. Sketches on Genetic Mineralogy. Nauka, Moscow (Russ.)

    Google Scholar 

  • Kunz AF (1974) Typomorphic peculiarities of natural and synthetic crystals of CaF2. In: Fishman MV (ed) Geology and minerals of the North-East of European part of the USSR

    Google Scholar 

  • Kunz AF (1976) Fluorite crystal growth under hydrothermal conditions and its structural and morphological features. In: Yushkin NP (ed) Problems of genetic information in minerals. Komi Branch Acad Sci USSR, Syktyvkar

    Google Scholar 

  • Kunz AF (1982) Crystallization of yttrium fluorite under hydrothermal conditions. Proc Inst Geol Komi Branch Acad Sci USSR, Crystallogenesis 39:31—41. Ed Acad Sci USSR, Syktyvkar.

    Google Scholar 

  • Laemmlein GG (1948) Sectorial structure of crystals. Academy of Science USSR. Moscow [see also: Laemmlein GG (1973)] (Russ.)

    Google Scholar 

  • Laemmlein GG (1973) Morphology and genesis of crystals. Nauka, Moscow (Russ.)

    Google Scholar 

  • Lieberts J (1965) Hydrothermal-Untersuchungen an einigen Verbindungen. Chem Ing Techn 37:8:830–832

    Article  Google Scholar 

  • Mikhailov MA, Sipovskii DP, Glikin AE, et al. (1973) Crystallization of ittrium-iron garnet and orthoferrite under hydrothermal conditions. In: Frank-Kamenetskii VA (ed) Crystallography and crystallochemistry 2. Leningrad State University, Leningrad (Russ.)

    Google Scholar 

  • Minerals (1960–2003) Reference book I–V. Nauka, Moscow (Russ.)

    Google Scholar 

  • Minerals 2:1 (1963) Reference book. Nauka, Moscow (Russ.)

    Google Scholar 

  • Moskalyuk AA, Zakharchenko AI (1966) Results of investigating gas-liquid inclusions in fluorite and quartz crystals of pegmatites in the Kaib granit massif (Central Kazakhstan). Proc Res Inst Synthesis Mineral Row Materials: Investigation of Mineral Forming Solutions 9:87–92. (Russ.)

    Google Scholar 

  • Nikolaeva VP, Petrov TG (1973) Correlations between vicinal formations produced on a face of the alum octahedron and crystal structure defects. In: Frank-Kamenetskii VA (ed) Crystallography and crystallochemistry 2. Leningrad State University, Leningrad (Russ.)

    Google Scholar 

  • Novgorodova MI (1968) On morphology of chalcopyrite crystals obtained from deposits belonging to various genetic types. Zapiski Vsesoyuz Miner Obsh 5:582–593 (Russ.)

    Google Scholar 

  • Ovchinnikov LN, Masalovich AM (1977) Polymorphism of water and its role in hydrothermal mineral formation. Zapiski Vsesoyuz Miner Obsh 106:2:179–192.

    Google Scholar 

  • Paneth F (1914) Über Adsorbierung und Fällung der Radioelemente. Phys Zs 15:924–939

    Google Scholar 

  • Pleskova MA, Balitskii VS (1966) Typomorphic features and formation conditions of fluorite in pegmatites of Central Kazakhstan. Miner Collected Papers Lvov Univ 20:4:519–525 (Russ.)

    Google Scholar 

  • Petrov TG (1964) Effect of media upon the growth of potassium nitrate crystals from aqueous solutions. Kristallografiya 9:4:541–546 (Russ.)

    Google Scholar 

  • Petrov TG (1977) On impossibility of determination of crystallization sequence according to individual characteristics of minerals. Zapiski Vsesoyuz Miner Obsh 4:499–502 (Russ.)

    Google Scholar 

  • Petrov TG, Treivus EB, Kasatkin AP (1969) Crystal growing from solutions. Academic, New York

    Google Scholar 

  • Petrov TG, Treivus EB, Punin YuO, Kasatkin AP (1983) Crystal growing from solutions. Nedra, Moscow (Russ.)

    Google Scholar 

  • Petrovskii VA (1983) Growth of crystals in heterogeneous solutions. Nauka, Leningrad (Russ.)

    Google Scholar 

  • Pleskova MA, Balitskii VS (1966) Typomorphic features and formation conditions of fluorite in pegmatites of Central Kazakhstan. Miner Collected Papers Luov Univ 20:4:519–525 (Russ.)

    Google Scholar 

  • Popov VA (1984) Applied crystal morphology of minerals. Academy of Science USSR. Sverdlovsk (Russ.)

    Google Scholar 

  • Popov VA , Popova VI (1996) Associations of mineral crystal habits. Academy of Science USSR. Miass (Russ.)

    Google Scholar 

  • Preuss E (1981) Fluβspat. Skalenoedrische Fluβspat-Kristalle von Wölsendorf und Zschopau. Lapis 6:1:14

    Google Scholar 

  • Punin YuO, Nekhorosheva AG (1987) Decomposition of copper sulfate crystals under non-stationary growth conditions. Vestnik Leningrad State University. Ser. Geol Geogr 18:68–72 (Russ.)

    Google Scholar 

  • Punin YuO, Petrov TG (1972) Anomalies of growth rates of potassium chloride crystals growing from aqueous solutions. In: Sheftal NN (ed) Growth of crystals IX. Nauka, Moscow (Russ.)

    Google Scholar 

  • Pupin JR, Turco G (1972) Unetipologie originale du zircon accessorie. Bull. Soc Franc Miner Crist 95:348–359

    Google Scholar 

  • Rykl D, Bauer J (1972) Hydrotermalni syntesa fluoritu. Sb Vysoká `kola Chemicko-Technologická (VSCT) Praha 14:13–19 (Czech)

    Google Scholar 

  • Scheerer T, Drechsel E (1873) Künstliche Darstellung von Fluβspat und Schwerspat. Zs. prakt. Chem 7:63

    Article  Google Scholar 

  • Shafranovskii II (1957) Crystals of minerals 1: flat-faced forms. Leningrad State University, Leningrad (Russ.)

    Google Scholar 

  • Shafranovskii II (1968) Lectures on crystal morphology of minerals. Vysshaya Shkola, Moscow (Russ.)

    Google Scholar 

  • Shafranovskii II (1981) Some notes concerning the problems of genetic interpretation of the crystal habits. Zapiski Vsesoyuz Miner Obsh 1:119–124 (Russ.)

    Google Scholar 

  • Shubnikov AV (1975) Influence of solution supersaturation degree upon the habits of precipitating alum crystals. In: AV Shubnikov (ed) Selected works on crystallography. Nauka, Moscow (Russ.)

    Google Scholar 

  • Shushkanov AD (1969) On the hydrothermal synthesis of fluorite. Proc VII Conf young researches, Miner Sect 2. Ed. All-Union Institute for Mineral Row Materials, Moscow (Russ.)

    Google Scholar 

  • Shuvalov LA, Urusovskaya AA, Zheludev IS, et al. (1988) Physical properties of crystals. In: Vainshtein BK, Chernov AA, Shuvalov LA (eds) Modern Crystallography III. Springer, Berlin.

    Google Scholar 

  • Sipovskii DP (1964) First stages of crystal regeneration in solutions (exemplary systems: KAl(SO4)212H2O, NaBrO3, NaCl). Kristallografia 9:2:242–247 (Russ.)

    Google Scholar 

  • Sipyagin VV (1967) Some anomalies of NaClO3 and KClO3 face growth rates depending upon the temperature at constant supersaturation. Kristallografia 4:678–683 (Russ.)

    Google Scholar 

  • Sipyagin VV, Chernov AA (1972) Anomalous temperature dependences of growth rates of KNO3, NaNO2, NaNO3, NaClO4 and Seignette salt crystal faces when growing from aqueous solutions. Kristallografiya 5:1003–1008 (Russ.)

    Google Scholar 

  • Sipyagin VV, Chernov AA, Fedin EI, et al. (1976) NMR investigation of solution thin films adsorbed on the crystal faces. Kristallografia 2:370–380 (Russ.)

    Google Scholar 

  • Solubility (1961–1970) Reference book 1–3. Nauka, Moscow (Russ.)

    Google Scholar 

  • Stroitelev SA (1961) Origin of combination striae in crystals. Zapiski Vsesoyuz Miner Obsh 6:709–713 (Russ.)

    Google Scholar 

  • Sunagawa I (2005) Crystals. Cambridge University Press. Cambridge/New York/Melbourne/ Madrid/Cape Town/Singapore/Säo Paulo

    Book  Google Scholar 

  • Tatarskii VB (1965) Crystal optics and the immersion method. Nedra, Moscow (Russ.)

    Google Scholar 

  • Tatarskii VB (1967) On compositions of the flat nets, which are parallel to various faces of a crystal. Miner Sborn Lvov Univ 21:4:386–387 (Russ.)

    Google Scholar 

  • Treivus EB (1986) On corresponding forms of mineral crystals. Zapiski Vsesoyuz Miner Obsh 3:390–392 (Russ.)

    Google Scholar 

  • Treivus EB (1989) Some kinetic aspects of crystal morphology of minerals. Zapiski Vsesoyuz Miner Obsh 3:91–100 (Russ.)

    Google Scholar 

  • Vasilkova NN, Kukushkina OA, Sidorenko GA, Shushkanov AYa (1972) Experimental investigation of fluorite typomorphic features. In: Typomorphism of minerals and its practical significance. Nedra, Moscow (Russ.)

    Google Scholar 

  • Vasilkova NN, Kukushkina OA (1976) Fluorite crystal morphology by the results of hydrothermal synthesis. In: Novelties in mineralogical investigations. Ed: All-Union Institute for Mineral Row Materials, Moscow (Russ.)

    Google Scholar 

  • Vasilkova NN, Kulikiv I V, Lyapunov SM (1980) Fluorite as an indicator of formation conditions and zoning of sheelite-flourite ore assocation of Tyrnyauz. Miner J 2:6:45–54 (Russ.)

    Google Scholar 

  • Volkova LP (1953) Fluorite in Bashkirian High-Permian sedimentary rocks. Izvestia Acad Sci USSR, ser geol 6:117 (Russ.)

    Google Scholar 

  • Vovk PK, Melnikov VS (1966) Fluorite crystal morphology from some fluorite deposits of the Khurai group (Western Transbaikalia). Miner Collected Papers Lvov Univ 20:4:498–507 (Russ.)

    Google Scholar 

  • Voskresenskaya IE, Barsukova ML (1968) Preparation and properties of certain iron-containing and non-iron tourmalins. In: Lobachev AN (ed) Hydrothermal synthesis of crystals. Nauka, Moscow 75–191 (Russ.)

    Google Scholar 

  • Wells AF (1946a) Crystal habit and internal structure I. Phil Mag 37:266:184–199

    Google Scholar 

  • Wells AF (1946b) Crystal habit and internal structure II. Phil Mag 37:267:217–236

    Google Scholar 

  • Wells AF (1946c) Crystal habit and internal structure III. Phil Mag 37:272:605–630

    Google Scholar 

  • Winchell AN, Winchell H (1964) The microscopical characters of artificial inorganic solid substances: optical properties of artificial minerals. Academic, New York/London

    Google Scholar 

  • Wyckoff R (1966) Crystal structures 3. Wiley, New York/London/Sydney

    Google Scholar 

  • Yaroshevskii AA (1959) To the relations of garnet crystal habit with mineral forming conditions. In: Proc Miner Museum Acad Sci USSR 10:137–141 (Russ.)

    Google Scholar 

  • Yushkin NP, Romashkin YuN, Markova GA (1983) Ural-New Earth fluorite region. Nauka, Leningrad (Russ.)

    Google Scholar 

  • Zatsikha BV (1968) Fluorite formation conditions in pegmatites of the granite massif Stone Graves (Azov region). In: Smirnov VI, Ermakov NP, Dolgov YuA et al. (eds) Mineralogical Thermometry and Barometry 2 oscow (Russ.)

    Google Scholar 

  • Zatsikha B V, Vovk PK, Pavlishin VI, Kurovets MI (1971) Fluorite of chamber pegmatites from Vol. Doklady Acad Sci Ukrainynian SSR B10: 884–888 (Ukrainian)

    Google Scholar 

  • Zemyatchenskii PA (1909) Crystallogenetic sketches I. Imperial Academy of Science, St. Petersburg (Russ.)

    Google Scholar 

  • Zemyatchenskii PA (1911) Crystallogenetic sketches II. Imperial Academy of Science, St. Petersburg (Russ.)

    Google Scholar 

  • Zidarova B, Maleev MN, Kostov I (1978) Crystallogenesis and habit zoning of fluorite from Mikhailovsoe deposit, Central Rodopi. In: Geochemistry, Mineralogy, and Petrology 8. Ed: Bulgarian Acad Sci, Sofia (Bulgarian)

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

(2009). Crystal Faceting. In: Polymineral-Metasomatic Crystallogenesis. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8983-1_8

Download citation

Publish with us

Policies and ethics