Skip to main content
  • 1190 Accesses

Abstract

Loss of zoospores has happened independently several times in different phylogenic lines and has, it is claimed, no major phylogenetic significance. But whether or not, how, and under which conditions plant pathogens retain the ability to produce motile asexual spores has fundamental importance from an ecological and epidemiological perspective. Recent molecular investigations of the early evolution of fungi and oomycetes are shedding light on the issue of zoospore loss in organisms able to cause plant diseases. Zoospore loss may have accompanied the development of new forms of dispersal adapted to the terrestrial environment, or the simplification processes which often follow the shift to parasitic or biotrophic life-forms. In this review we consider hybridisation events between Phytophthora species, long distance dispersal of oomycetes, sporangia and zoospore survival, direct and indirect infection processes and newly observed sporulating structures. These aspects are all relevant features for an understanding of the epidemiology of zoosporic plant pathogens. Disease management should not be based on the presumption that the zoosporic stage is a weak link in the life cycle. Oomycete plant pathogens show remarkable flexibility in their life cycles and ability to adapt to changing environmental circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, M. J. (1991). Transmission of plant viruses by fungi. Annals of Applied Biology, 118, 479–492.

    Google Scholar 

  • Amon, J. P. (1978). Method for obtaining sporulating Labyrinthula. Mycologia, 70, 1297–1299.

    Google Scholar 

  • Amon, J. P., & Perkins, F. O. (1968). Structure of Labyrinthula sp. zoospores. The Journal of Eukaryotic Microbiology, 15, 543–546.

    Google Scholar 

  • Andrade-Piedra, J. L., Hijmans, R. J., Forbes, G. A., Fry, W. E., & Nelson, R. J. (2005). Simulation of potato late blight in the Andes. I: Modification and parameterization of the lateblight model. Phytopathology, 95, 1191–1199.

    PubMed  Google Scholar 

  • Andrieu, N., Jaworska, G., Genet, J.-L., & Bompeix, G. (2001). Biological mode of action of Famoxadone on Plasmopara viticola and Phytophthora infestans. Crop Protection, 20, 253–260.

    CAS  Google Scholar 

  • Andrivon, D., Lucas, J. M., & Ellisseche, D. (2003). Development of natural late blight epidemics in pure and mixed plots of potato cultivars with different levels of partial resistance. Plant Pathology, 52, 586–594.

    Google Scholar 

  • Augspurger, C. K., & Wilkinson, H. T. (2007). Host specificity of pathogenic Pythium species: implications for tree species diversity. Biotropica, 39, 702–708.

    Google Scholar 

  • Aylor, D. E. (1999). Biophysical scaling and the passive dispersal of fungus spores: Relationship to integrated pest management strategies. Agricultural and Forest Meteorology, 97, 275–292.

    Google Scholar 

  • Aylor, D. E. (2003). Spread of plant disease on a continental scale: Role of aerial dispersal of pathogens. Ecology, 84, 1989–1997.

    Google Scholar 

  • Aylor, D. E., Fry, W. E., Mayton, H., & Andrade-Piedra, J. L. (2001). Quantifying the rate of release and escape of Phytophthora infestans sporangia from a potato canopy. Phytopathology, 91, 1189–1196.

    PubMed  CAS  Google Scholar 

  • Baker, K. M., Kirk, W. W., Stein, J. M., & Andresen, J. A. (2005). Climatic trends and potato late blight risk in the upper Great Lakes Region. Horttechnology, 15, 510–518.

    Google Scholar 

  • Bell, T., Freckleton, R. P., & Lewis, O. T. (2006). Plant pathogens drive density-dependent seedling mortality in a tropical tree. Ecology Letters, 9, 569–574.

    PubMed  Google Scholar 

  • Bigelow, D. M., Olsen, M. W., & Gilbertson, R. L. (2005). Labyrinthula terrestris sp nov., a new pathogen of turf grass. Mycologia, 97, 185–190.

    PubMed  CAS  Google Scholar 

  • Bonants, P. J. M., Hagenaar-de Weerdt, M., Man in’t Veld, W. A., & Baayen, R. P. (2000). Molecular characterization of natural hybrids of Phytophthora nicotianae and P. cactorum. Phytopathology, 90, 867–874.

    PubMed  CAS  Google Scholar 

  • Bourgeois, G., Bourque, A., & Deaudelin, G. (2004). Modelling the impact of climate change on disease incidence: A bioclimatic challenge. Canadian Journal of Plant Pathology, 26, 284–290.

    Google Scholar 

  • Brasier, C. M., & Hansen, E. M. (1992). Evolutionary biology of Phytophthora. Part II: Phylogeny, speciation, and population structure. Annual Review of Phytopathology, 30, 173–200.

    Google Scholar 

  • Brasier, C. M., & Jung, T. (2003). Progress in understanding Phytophthora diseases of trees in Europe. In J. A. McComb, G. E. St J. Hardy, & I. Tommerup (Eds.) Phytophthora in forests and natural ecosystems. Proceedings of the second international meeting of IUFRO working party 0.02.09, Albany, Western Australia, 2001 (pp. 4–18). Perth, Australia: Murdoch University.

    Google Scholar 

  • Brasier, C. M., Kirk, S. A., Delcan, J., Cooke, D. E. L., Jung, T., & Man in’t Veld, W. A. (2004). Phytophthora alni sp. nov. and its variants: designation of emerging heteroploid hybrid pathogens spreading on Alnus trees. Mycological Research, 108, 1172–1184.

    PubMed  CAS  Google Scholar 

  • Brasier, C. M., Rose, J., & Gibbs, J. N. (1995). An unusual Phytophthora associated with widespread alder mortality in Britain. Plant Pathology, 44, 999–1007.

    Google Scholar 

  • Brown, J. K. M., & Hovmøller, M. S. (2002). Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science, 297, 537–541.

    PubMed  CAS  Google Scholar 

  • Bruns, T. (2006). A kingdom revised. Nature, 43, 758–761.

    Google Scholar 

  • Burdon, J. J., & Chilvers, G. A. (1982). Host density as a factor in plant disease ecology. Annual Review of Phytopathology, 20, 143–166.

    Google Scholar 

  • Calvo-Bado, L. A., Petch, G., Parsons, N. R., Morgan, J. A. W., Pettitt, T. R., et al. (2006). Microbial community responses associated with the development of oomycete plant pathogens on tomato roots in soilless growing systems. Journal of Applied Microbiology, 100, 1194–1207.

    PubMed  CAS  Google Scholar 

  • Campbell, C. L. (1999). The importance of dispersal mechanisms in the epidemiology of Phytophthora blights and downy mildews on crop plants. Ecosystem Health, 5, 146–157.

    Google Scholar 

  • Campbell, R. N. (1996). Fungal transmission of plant viruses. Annual Review of Phytopathology, 34, 87–108.

    PubMed  CAS  Google Scholar 

  • Clay, K., & Kover, P. X. (1996). The Red Queen Hypothesis and plant/pathogen interactions. Annual Review of Phytopathology, 34, 29–50.

    PubMed  CAS  Google Scholar 

  • Condeso, T. E., & Meentemeyer, R. K. (2007). Effects of landscape heterogeneity on the emerging forest disease sudden oak death. Journal of Ecology, 95, 364–375.

    Google Scholar 

  • Cooke, D. E. L., Drenth, A., Duncan, J. M., Wagels, G., & Brasier, C. M. (2000). A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genetics and Biology, 30, 17–32.

    PubMed  CAS  Google Scholar 

  • Coyier, D. L. (1981). Control of Phytophthora ilicis on English holly with sprays or soil drenches. Phytopathology, 71, 868–868.

    Google Scholar 

  • Craven, K. D., Peterson, P. D., Windham, D. E., Mitchell, T. K., & Martin, S. B. (2005). Molecular identification of the turf grass rapid blight pathogen. Mycologia, 97, 160–166.

    PubMed  CAS  Google Scholar 

  • Deacon, J. W., & Donaldson, S. P. (1993). Molecular recognition in the homing responses of zoosporic fungi, with special reference to Pythium and Phytophthora. Mycological Research, 97, 1153–1171.

    CAS  Google Scholar 

  • De Jonghe, K., De Dobbelaere, I., Sarrazyn, R., & Hofte, M. (2005). Control of Phytophthora cryptogea in the hydroponic forcing of witloof chicory with the rhamnolipid-based biosurfactant formulation PRO1. Plant Pathology, 54, 219–226.

    Google Scholar 

  • Dick, M. W. (1997). Fungi, flagella and phylogeny. Mycological Research, 101, 385–394.

    Google Scholar 

  • Dick, M. W. (2002). Towards an understanding of the evolution of the downy mildews. In P. T. N. Spencer-Phillips (Ed.) Advances in downy mildew research (pp. 1–57). Dordrecht: Kluwer.

    Google Scholar 

  • English, J. T., Laday, M., Bakonyi, J., Schoelz, J. E., & Érsek, T. (1999). Phenotypic and molecular characterization of species hybrids derived from induced fusion of zoospores of Phytophthora capsici and Phytophthora nicotianae. Mycological Research, 103, 1003–1008.

    CAS  Google Scholar 

  • Entwistle, C. A., Olsen, M. W., & Bigelow, D. M. (2006). First report of a Labyrinthula spp. causing rapid blight of Agrostis capillaris and Poa annua on amenity turfgrass in the UK. Plant Pathology, 55, 306.

    Google Scholar 

  • Érsek, T., English, J. T., & Schoelz, J. E. (1995). Creation of species hybrids of Phytophthora with modified host ranges by zoospore fusion. Phytopathology, 85, 1343–1347.

    Google Scholar 

  • Erwin, D. C., & Ribeiro, O. K. (1996). Introduction to the genus Phytophthora. In D. C. Erwin, & O. K. Ribeiro (Eds.) Phytophthora disease worldwide pp. 1–7. American Phytopathological Society: St. Paul.

    Google Scholar 

  • Folman, L. B., De Klein, M. J. E. M., Postma, J., & van Veen, J. A. (2004). Production of antifungal compounds by Lysobacter enzymogenes isolate 3.1T8 under different conditions in relation to its efficacy as a biocontrol agent of Pythium aphanidermatum in cucumber. Biological Control, 31, 145–154.

    CAS  Google Scholar 

  • Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N., & Travers, S. E. (2006). Climate change effects on plant disease: genomes to ecosystems. Annual Review of Phytopathology, 44, 489–509.

    PubMed  CAS  Google Scholar 

  • Garrett, K. A., & Mundt, C. C. (2000). Host diversity can reduce potato late blight severity for focal and general patterns of primary inoculum. Phytopathology, 90, 1307–1312.

    PubMed  CAS  Google Scholar 

  • Garrett, K. A., Nelson, R. J., Mundt, C. C., Chacon, G., Jaramillo, R. E., & Forbes, G. A. (2001). The effects of host diversity and other management components on epidemics of potato late blight in the humid highland tropics. Phytopathology, 91, 993–1000.

    PubMed  CAS  Google Scholar 

  • Gibbs, J. N., Lipscombe, M. A., & Peace, A. J. (1999). The impact of Phytophthora disease on riparian populations of common alder (Alnus glutinosa) in southern Britain. European Journal of Forest Pathology, 29, 39–50.

    Google Scholar 

  • Gleason, F. H., Letcher, P. M., & McGee, P. A. (2004). Some Chytridiomycota in soil recover from drying and high temperatures. Mycological Research, 108, 583–589.

    PubMed  Google Scholar 

  • Göker, M., Riethmüller, A., Voglmayr, H., Weiss, M., & Oberwinkler, F. (2004). Phylogeny of Hyaloperonospora based on nuclear ribosomal internal transcribed spacer sequences. Mycological Progress, 3, 83–94.

    Google Scholar 

  • Göker, M., Voglmayr, H., Riethmüller, A., & Oberwinkler, F. (2007). How do obligate parasites evolve? A multi-gene phylogenetic analysis of downy mildews. Fungal Genetics and Biology, 44, 105–122.

    PubMed  Google Scholar 

  • Goodwin, S. B., Smart, C. D., Sandrock, R. W., Deahl, K. L., Punja, Z. K., & Fry, W. E. (1998). Genetic change within populations of Phytophthora infestans in the United States and Canada during 1994 to 1996: role of migration and recombination. Phytopathology, 88, 939–949.

    PubMed  CAS  Google Scholar 

  • Grove, G. G., & Boal, R. J. (1991). Influence of temperature and wetness duration on infection of immature apple and pear fruit by Phytophthora cactorum. Phytopathology, 81, 1465–1471.

    Google Scholar 

  • Gu, Y. H., & Ko, W. H. (2000). Segregation following interspecific transfer of isolated nuclei between Phytophthora parasitica and P. capsici. Canadian Journal of Microbiology, 46, 410–416.

    PubMed  CAS  Google Scholar 

  • Haas, D., & Defago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology, 3, 307–319.

    PubMed  CAS  Google Scholar 

  • Haber, S., Barr, D. J. S., & Platford, R. G. (1991). Observations on the distribution of flame chlorosis in Manitoba and its association with certain zoosporic fungi and the intensive cultivation of cereals. Canadian Journal of Plant Pathology, 13, 241–246.

    Google Scholar 

  • Hannukkala, A. O., Kaukoranta, T., Lehtinen, A., & Rahkonen, A. (2007). Late-blight epidemics on potato in Finland, 1933–2002; increased and earlier occurrence of epidemics associated with climate change and lack of rotation. Plant Pathology, 56, 167–176.

    Google Scholar 

  • Hardham, A. R. (2007). Cell biology of plant–oomycete interactions. Cellular Microbiology, 9, 31–39.

    PubMed  CAS  Google Scholar 

  • Hardham, A. R., Cahill, D. M., Cope, M., Gabor, B. K., Gubler, F., & Hyde, G. J. (1994). Cell surface antigens of Phytophthora spores—biological and taxonomic characterization. Protoplasma, 181, 213–232.

    Google Scholar 

  • Hardy, G. E. St J., & Sivasithamparam, K. (1991). Sporangial responses do not reflect microbial suppression of Phytophthora drechsleri in composted Eucalyptus bark mix. Soil Biology and Biochemistry, 23, 757–765.

    Google Scholar 

  • Harris, D. C., & Xu, X. M. (2003). Conditions for infection of apple by Phytophthora syringae. Journal of Phytopathology, 151, 190–194.

    Google Scholar 

  • Heungens, K., & Parke, J. L. (2000). Zoospore homing and infection events: Effects of the biocontrol bacterium Burkholderia cepacia AMMDR1 on two oomycete pathogens of pea (Pisum sativum L.). Applied and Environmental Microbiology, 66, 5192–5200.

    PubMed  CAS  Google Scholar 

  • Hill, A. E., Grayson, D. E., & Deacon, J. W. (1998). Suppressed germination and early death of Phytophthora infestans sporangia caused by pectin, inorganic phosphate, ion chelators and calcium-modulating treatments. European Journal of Plant Pathology, 104, 367–376.

    CAS  Google Scholar 

  • Hoitink, H. A. J., & Boehm, M. J. (1999). Biocontrol within the context of soil microbial communities: A substrate-dependent phenomenon. Annual Review of Phytopathology, 37, 427–446.

    PubMed  CAS  Google Scholar 

  • Holdenrieder, O., Pautasso, M., Weisberg, P. J., & Lonsdale, D. (2004). Tree diseases and landscape processes: The challenge of landscape pathology. Trends in Ecology & Evolution, 19, 446–452.

    Google Scholar 

  • Honda, D., Shono, T., Kimura, K., Fujita, S., Iseki, M., Makino, Y., et al. (2007). Homologs of the sexually induced gene 1 (sig1) product constitute the stramenopile mastigonemes. Protist, 158, 77–88.

    PubMed  CAS  Google Scholar 

  • Hong, C. X., & Moorman, G. W. (2005). Plant pathogens in irrigation water: Challenges and opportunities. Critical Reviews in Plant Sciences, 24, 189–208.

    Google Scholar 

  • Hood, L. A., Swaine, M. D., & Mason, P. A. (2004). The influence of spatial patterns of damping-off disease and arbuscular mycorrhizal colonization on tree seedling establishment in Ghanaian tropical forest soil. Journal of Ecology, 92, 816–823.

    Google Scholar 

  • Irish, B. M., Correll, J. C., & Morelock, T. E. (2002). The effect of synthetic surfactants on disease severity of white rust on spinach. Plant Disease, 86, 791–796.

    CAS  Google Scholar 

  • Jactel, H., & Brockerhoff, E. G. (2007). Tree diversity reduces herbivory by forest insects. Ecology Letters, 10, 835–848.

    PubMed  Google Scholar 

  • James, T. Y., et al. (2006a). Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature, 443, 818–822.

    PubMed  CAS  Google Scholar 

  • James, T. Y., Letcher, P. M., Longcore, J. E., Mozley-Standridge, S. E., Porter, D., Powell, M. J., et al. (2006b). A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia, 98, 860–871.

    PubMed  Google Scholar 

  • Jang, P., & Safeeulla, K. M. (1990). Modes of entry, establishment and seed transmission of Peronospora parasitica in radish. Proceedings of the Indian Academy of Sciences—Plant Sciences, 100, 369–373.

    Google Scholar 

  • Jeger, M. J. (2004). Analysis of disease progress as a basis for evaluating disease management practices. Annual Review of Phytopathology, 42, 61–82.

    PubMed  CAS  Google Scholar 

  • Jeger, M. J., Gilijamse, E., Bock, C. H., & Frinking, H. D. (1998). The epidemiology, variability and control of the downy mildews of pearl millet and sorghum, with particular reference to Africa. Plant Pathology, 47, 544–569.

    Google Scholar 

  • Jeger, M. J., & Pautasso, M. (2008). Plant disease and global change—The importance of long-term data sets. New Phytologist, 177, 8–11.

    PubMed  Google Scholar 

  • Jeger, M. J., Pautasso, M., Holdenrieder, O., & Shaw, M. W. (2007). Modelling disease spread and control in networks: implications for plant sciences. New Phytologist, 174, 279–297.

    PubMed  Google Scholar 

  • Johnson, D. A., Alldredge, J. R., & Vakoch, D. L. (1996). Potato late blight forecasting models for the semiarid environment of south-central Washington. Phytopathology, 86, 480–484.

    Google Scholar 

  • Judelson, H. S., & Blanco, F. A. (2005). The spores of Phytophthora: weapons of the plant destroyer. Nature Reviews Microbiology, 3, 47–58.

    PubMed  CAS  Google Scholar 

  • Jung, T., & Blaschke, M. (2004). Phytophthora root and collar rot of alders in Bavaria: distribution, modes of spread and possible management strategies. Plant Pathology, 53, 197–208.

    Google Scholar 

  • Kageyama, K., Suzuki, M., Priyatmojo, A., Oto, Y., Ishiguro, K., Suga, H., et al. (2003). Characterization and identification of asexual strains of Pythium associated with root rot of rose in Japan. Journal of Phytopathology, 151, 485–491.

    Google Scholar 

  • Kast, W. K., & Stark-Urnau, M. (1999). Survival of sporangia from Plasmopara viticola, the downy mildew of grapevine. Vitis, 38, 185–186.

    Google Scholar 

  • Keesing, F., Holt, R. D., & Ostfeld, R. S. (2006). Effects of species diversity on disease risk. Ecology Letters, 9, 485–498.

    PubMed  CAS  Google Scholar 

  • Kennedy, R., & Pegg, G. F. (1990). Phytophthora cryptogea root rot of tomato in rockwool nutrient culture. 2. Effect of root zone temperature on infection, sporulation and symptom development. Annals of Applied Biology, 117, 537–551.

    Google Scholar 

  • Kennelly, M. M., Gadoury, D. M., Wilcox, W. F., Magarey, P. A., & Seem, R. C. (2007). Primary infection, lesion productivity, and survival of sporangia in the grapevine downy mildew pathogen Plasmopara viticola. Phytopathology, 97, 512–522.

    PubMed  Google Scholar 

  • Kiefer, B., Riemann, M., Buche, C., Kassemeyer, H. H., & Nick, P. (2002). The host guides morphogenesis and stomatal targeting in the grapevine pathogen Plasmopara viticola. Planta, 215, 387–393.

    PubMed  CAS  Google Scholar 

  • Kim, B. S., Lee, J. Y., & Hwang, B. K. (2000). In vivo control and in vitro antifungal activity of rhamnolipid B, a glycolipid antibiotic, against Phytophthora capsici and Colletotrichum orbiculare. Pest Management Science, 56, 1029–1035.

    CAS  Google Scholar 

  • Kranz, J. (1980). Comparative epidemiology: an evaluation of scope, concepts and methods. In J. Palti, & J. Kranz (Eds.) Comparative epidemiology. A tool for better disease management (pp. 18–28). Centre for Agricultural Publishing and Documentation: Wageningen.

    Google Scholar 

  • Kranz, J. (2003). Comparative epidemiology of plant diseases. Springer: Berlin.

    Google Scholar 

  • Lange, L., & Olson, L. W. (1976). Flagellar apparatus and striated rhizoplast of zoospore of Olpidium brassicae. Protoplasma, 89, 339–351.

    Google Scholar 

  • Lange, L., & Olson, L. W. (1983). The fungal zoospore. Its structure and biological significance. In S. T. Buczacki (Ed.) Zoosporic plant pathogens (pp. 1–42). Academic: London.

    Google Scholar 

  • Larkin, R. P., Ristaino, J. B., & Campbell, C. L. (1995). Detection and quantification of Phytophthora capsici in soil. Phytopathology, 85, 1057–1063.

    Google Scholar 

  • Leander, C. A., & Porter, D. (2001). The Labyrinthulomycota is comprised of three distinct lineages. Mycologia, 93, 459–464.

    Google Scholar 

  • Leano, E. M., Vrijmoed, L. L. P., & Jones, E. B. G. (1998). Zoospore chemotaxis of two mangrove strains of Halophytophthora vesicula from Mai Po, Hong Kong. Mycologia, 90, 1001–1008.

    Google Scholar 

  • Lebeda, A., & Schwinn, F. J. (1994). The downy mildews—An overview of recent research progress. Journal of Plant Diseases and Protection, 101, 225–254.

    CAS  Google Scholar 

  • Lozoya-Saldana, H., Coyote-Palma, M. H., Ferrera-Cerrato, R., & Lara-Hernandez, M. E. (2006). Microbial antagonism against Phytophthora infestans (Mont) de Bary. Agrociencia, 40, 491–499.

    Google Scholar 

  • MacDonald, J. D. (1991). Heat stress enhances Phytophthora root rot severity in container-grown Chrysanthemums. Journal of the American Society for Horticultural Science, 116, 36–41.

    Google Scholar 

  • Madden, L. V. (2006). Botanical epidemiology: Some key advances and its continuing role in disease management. European Journal of Plant Pathology, 115, 3–23.

    Google Scholar 

  • Madsen, A. M., Robinson, H. L., & Deacon, J. W. (1995). Behaviour of zoospore cysts of the mycoparasite Pythium oligandrum in relation to their potential for biocontrol of plant pathogens. Mycological Research, 99, 1417–1424.

    Google Scholar 

  • Maier, R. M., & Soberon-Chavez, G. (2000). Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Applied Microbiology and Biotechnology, 54, 625–633.

    PubMed  CAS  Google Scholar 

  • Martin, F. N., & Loper, J. E. (1999). Soilborne plant diseases caused by Pythium spp: Ecology, epidemiology, and prospects for biological control. Critical Reviews in Plant Sciences, 18, 111–181.

    CAS  Google Scholar 

  • May, K. J., Drenth, A., & Irwin, J. A. G. (2003). Interspecific hybrids between the homothallic Phytophthora sojae and Phytophthora vignae. Australasian Plant Pathology, 32, 353–359.

    CAS  Google Scholar 

  • McDonald, B. A., & Linde, C. (2002). Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology, 40, 349–379.

    PubMed  CAS  Google Scholar 

  • Mitani, S., Araki, S., Yamaguchi, T., Takii, Y., Ohshima, T., & Matsuo, N. (2001). Antifungal activity of the novel fungicide cyazofamid against Phytophthora infestans and other plant pathogenic fungi in vitro. Pesticide Biochemistry and Physiology, 70, 92–99.

    CAS  Google Scholar 

  • Money, N. P., Davis, C. M., & Ravishankar, J. P. (2004). Biomechanical evidence for convergent evolution of the invasive growth process among fungi and oomycete water molds. Fungal Genetics and Biology, 41, 872–876.

    PubMed  Google Scholar 

  • Moralejo, E., Puig, M., García, J. A., & Descals, E. (2006). Stromata, sporangiomata and chlamydosori of Phytophthora ramorum on inoculated Mediterranean woody plants. Mycological Research, 110, 1323–1332.

    PubMed  Google Scholar 

  • Nielsen, C. J., Ferrin, D. M., & Stanghellini, M. E. (2006). Efficacy of biosurfactants in the management of Phytophthora capsici on pepper in recirculating hydroponic systems. Canadian Journal of Plant Pathology, 28, 450–460.

    CAS  Google Scholar 

  • Nitschke, M., Costa, S. G. V. A. O., & Contiero, J. (2005). Rhamnolipid surfactants: An update on the general aspects of these remarkable biomolecules. Biotechnology Progress, 21, 1593–1600.

    PubMed  CAS  Google Scholar 

  • Olsen, M. W. (2007). Labyrinthula terrestris: a new pathogen of cool-season turfgrasses. Molecular Plant Pathology, 8, 817–820.

    Google Scholar 

  • Olsen, M. W., Bigelow, D. M., & Gilbertson, R. L. (2003). First report of a Labyrinthula sp. causing rapid blight disease of rough bluegrass and perennial ryegrass. Plant Disease, 87, 1267.

    Google Scholar 

  • Olsen, A., & Stenlid, J. (2002). Pathogenic fungal species hybrids infecting plants. Microbes and Infection, 4, 1353–1359.

    Google Scholar 

  • Oyarzun, P. J., Yanez, J., & Forbes, G. A. (2004). Evidence for host mediation of preinfection stages of Phytophthora infestans on the leaf surface of Solanum phureja. Journal of Phytopathology, 152, 651–657.

    Google Scholar 

  • Packer, A., & Clay, K. (2000). Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature, 404, 278–281.

    PubMed  CAS  Google Scholar 

  • Paul, B. (2003). Pythium glomeratum, a new species isolated from agricultural soil taken in north-eastern France, its ITS region and its comparison with related species. FEMS Microbiology Letters, 225, 47–52.

    PubMed  CAS  Google Scholar 

  • Paulitz, T. C., & Belanger, R. R. (2001). Biological control in greenhouse systems. Annual Review of Phytopathology, 39, 103–133.

    PubMed  CAS  Google Scholar 

  • Pautasso, M., Holdenrieder, O., & Stenlid, J. (2005). Susceptibility to fungal pathogens of forests differing in tree diversity. In M. Scherer-Lorenzen, Ch. Koerner, & D. Schulze (Eds.) Forest diversity and function: temperate and boreal systems (pp. 263–289). Berlin, Germany: Springer.

    Google Scholar 

  • Pautasso, M., & Jeger, M. J. (2008). Epidemic threshold and network structure: The interplay of probability of transmission and of persistence in small-size directed networks. Ecological Complexity, 5, 1–8.

    Google Scholar 

  • Perkins, F. O. (1973). A new species of marine labyrinthulid Labyrinthuloides yorkensis gen. nov. spec. nov.—Cytology and fine structure. Archiv für Mikrobiologie, 90, 1–17.

    Google Scholar 

  • Phillips, S. L., Shaw, M. W., & Wolfe, M. S. (2005). The effect of potato variety mixtures on epidemics of late blight in relation to plot size and level of resistance. Annals of Applied Biology, 147, 245–252.

    Google Scholar 

  • Pilet, F., Chacon, G., Forbes, G. A., & Andrivon, D. (2006). Protection of susceptible potato cultivars against late blight in mixtures increases with decreasing disease pressure. Phytopathology, 96, 777–783.

    PubMed  CAS  Google Scholar 

  • Porter, L. D., & Johnson, D. A. (2004). Survival of Phytophthora infestans in surface water. Phytopathology, 94, 380–387.

    PubMed  Google Scholar 

  • Powell, J. A., Slapničar, I., & van der Werf, W. (2005). Epidemic spread of a lesion-forming plant pathogen—Analysis of a mechanistic model with infinite age structure. Linear Algebra and its Applications, 398, 117–140.

    Google Scholar 

  • Raftoyannis, Y., & Dic, M. W. (2002). Effects of inoculum density, plant age and temperature on disease severity caused by pythiaceous fungi on several plants. Phytoparasitica, 30, 67–76.

    Google Scholar 

  • Reuveni, M. (2003). Activity of the new fungicide benthiavalicarb against Plasmopara viticola and its efficacy in controlling downy mildew in grapevines. European Journal of Plant Pathology, 109, 243–251.

    CAS  Google Scholar 

  • Ristaino, J. B. (2002). Tracking historic migrations of the Irish potato famine pathogen, Phytophthora infestans. Microbes and Infection, 4, 1369–1377.

    PubMed  Google Scholar 

  • Ristaino, J. B., & Gumpertz, M. L. (2000). New frontiers in the study of dispersal and spatial analysis of epidemics caused by species in the genus Phytophthora. Annual Review of Phytopathology, 38, 541–576.

    PubMed  CAS  Google Scholar 

  • Ristaino, J. B., & Johnston, S. A. (1999). Ecologically based approaches to management of Phytophthora blight on bell pepper. Plant Disease, 83, 1080–1089.

    Google Scholar 

  • Rizzo, D. M., Garbelotto, M., & Hansen, E. A. (2005). Phytophthora ramorum: Integrative research and management of an emerging pathogen in California and Oregon forests. Annual Review of Phytopathology, 43, 309–335.

    PubMed  Google Scholar 

  • Rochon, D’. A., Kakani, K., Robbins, M., & Reade, R. (2004). Molecular aspects of plant virus transmission by olpidium and plasmodiophorid vectors. Annual Review of Phytopathology, 42, 211–41.

    PubMed  CAS  Google Scholar 

  • Rohner, E., Carabet, A., & Buchenauer, H. (2004). Effectiveness of plant extracts of Paeonia suffruticosa and Hedera helix against diseases caused by Phytophthora infestans in tomato and Pseudoperonospora cubensis in cucumber. Journal of Plant Diseases and Protection, 111, 83–95.

    Google Scholar 

  • Rumbolz, J., Wirtz, S., Kassemeyer, H. H., Guggenheim, R., Schafer, E., & Buche, C. (2002). Sporulation of Plasmopara viticola: differentiation and light regulation. Plant Biology, 4, 413–422.

    Google Scholar 

  • Schardl, C. L., & Craven, K. D. (2003). Interspecific hybridization in plant-associated fungi and oomycetes: A review. Molecular Ecology, 12, 2861–2873.

    PubMed  CAS  Google Scholar 

  • Sharma, A., Wray, V., & Johri, B. N. (2007). Rhizosphere Pseudomonas sp. strains reduce occurrence of pre- and post-emergence damping-off in chile and tomato in Central Himalayan region. Archives of Microbiology, 187, 321–335.

    PubMed  CAS  Google Scholar 

  • Shearer, B. L., Crane, C. E., Barrett, S., & Cochrane, A. (2007). Phytophthora cinnamomi invasion, a major threatening process to conservation of flora diversity in the South-west Botanical Province of Western Australia. Australian Journal of Botany, 55, 225–238.

    Google Scholar 

  • Shimai, T., Islam, M. T., Fukushi, Y., Hashidoko, Yo., Yokosawa, R., & Tahara, S. (2002). Nicotinamide and structurally related compounds show halting activity against zoospores of the phytopathogenic fungus Aphanomyces cochlioides. Zeitschrift fur Naturforschung C, 57, 323–331.

    CAS  Google Scholar 

  • Slusarenko, A. J., & Schlaich, N. L. (2003). Downy mildew of Arabidopsis thaliana caused by Hyaloperonospora parasitica (formerly Peronospora parasitica). Molecular Plant Pathology, 4, 159–170.

    Google Scholar 

  • Smilde, W. D., Vannes, M., & Reinink, K. (1995). Resistance to Phytophthora porri in leek and some of its wild relatives. Euphytica, 83, 131–138.

    Google Scholar 

  • Spring, O., & Zipper, R. (2006). Evidence for asexual genetic recombination in sunflower downy mildew, Plasmopara halstedii. Mycological Research, 110, 657–663.

    PubMed  CAS  Google Scholar 

  • Stanghellini, M. (1997). Inert components: Are they really so? Phytoparasitica, 25, S81–S86.

    Google Scholar 

  • Stanghellini, M. E., & Miller, R. M. (1997). Biosurfactans: Their identity and potential efficacy in the biological control of zoosporic plant pathogens. Plant Disease, 81, 4–12.

    CAS  Google Scholar 

  • Stein, J. M., & Kirk, W. W. (2003). Variations in the sensitivity of Phytophthora infestans isolates from different genetic backgrounds to dimethomorph. Plant Disease, 87, 1283–1289.

    CAS  Google Scholar 

  • Stowell, L. J., Martin, S. B., Olsen, M., Bigelow, D., Kohout, M., Peterson, P. D., Camberato, J., & Gelernter, W.D. (2005). Rapid blight: A new plant disease. APSnet feature story. Retrieved July 2007 from http://apsnet.org/online/feature/rapid/.

  • Streito, J. C., Legrand, P., Tabary, F., & De Villartay, G. J. (2002). Phytophthora disease of alder (Alnus glutinosa) in France: Investigations between 1995 and 1999. Forest Pathology, 32, 179–191.

    Google Scholar 

  • Sukno, S. A., Taylor, A. M., & Farman, M. L. (2002). Genetic uniformity among isolates of Peronospora tabacina, the tobacco blue mold pathogen. Phytopathology, 92, 1236–1244.

    PubMed  CAS  Google Scholar 

  • Teakle, D. S. (1983). Zoosporic fungi and viruses. Double trouble. In S. T. Buczacki (Ed.) Zoosporic plant pathogens (pp. 233–248). Academic: London.

    Google Scholar 

  • Thoirain, B., Husson, C., & Marcais, B. (2007). Risk factors for the Phytophthora-induced decline of alder in northeastern France. Phytopathology, 97, 99–105.

    PubMed  CAS  Google Scholar 

  • Tomlinson, J. A., & Faithfull, E. M. (1979). Effects of fungicides and surfactants on the zoospores of Olpidium brassicae. Annals of Applied Biology, 93, 13–19.

    CAS  Google Scholar 

  • Tyler, B. M. (2002). Molecular basis of recognition between Phytophthora pathogens and their hosts. Annual Review of Phytopathology, 40, 137–167.

    PubMed  CAS  Google Scholar 

  • Tyler, B. M. (2007). Phytophthora sojae: Root rot pathogen of soybean and model oomycete. Molecular Plant Pathology, 8, 1–8.

    CAS  Google Scholar 

  • Tyler, B. M., et al. (2006). Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science, 313, 1261–1266.

    PubMed  CAS  Google Scholar 

  • Uppalapati, S. R., Kerwin, J. L., & Fujita, Y. (2001). Epifluorescence and scanning electron microscopy of host–pathogen interactions between Pythium porphyrae (Peronosporales, Oomycota) and Porphyra yezoensis (Bangiales, Rhodophyta). Botanica Marina, 44, 139–145.

    Google Scholar 

  • Ustinova, I., Krienitz, L., & Huss, V. A. R. (2000). Hyaloraphidium curvatum is not a green alga, but a lower fungus; Amoebidium parasiticum is not a fungus, but a member of the DRIPs. Protist, 151, 253–262.

    PubMed  CAS  Google Scholar 

  • van West, P., Appiah, A. A., & Gow, N. A. R. (2003). Advances in research on oomycete root pathogens. Physiological and Molecular Plant Pathology, 62, 99–113.

    Google Scholar 

  • Viranyi, F., & Oros, G. (1991). Developmental stage response to fungicides of Plasmopara halstedii (Sunflower downy mildew). Mycological Research, 95, 199–205.

    CAS  Google Scholar 

  • Walker, C. A., & van West, P. (2007). Zoospore development in the oomycetes. Fungal Biology Reviews, 21, 10–18.

    Google Scholar 

  • Whipps, J. M., & Cooke, R. C. (1978). Behaviour of zoosporangia and zoospores of Albugo tragopogonis in relation to infection of Senecio squalidus. Transactions of the British Mycological Society, 71, 121–127.

    Google Scholar 

  • Williams, M. G., Magarey, P. A., & Sivasithamparam, K. (2007). Effect of temperature and light intensity on early infection behaviour of a Western Australian isolate of Plasmopara viticola, the downy mildew pathogen of grapevine. Australasian Plant Pathology, 36, 325–331.

    Google Scholar 

  • Williamson, B., Breese, W. A., & Shattock, R. C. (1995). A histological study of downy mildew (Peronospora rubi) infection of leaves, flowers and developing fruits of Tummelberry and other Rubus spp. Mycological Research, 99, 1311–1316.

    Article  Google Scholar 

  • Wu, B. M., Subbarao, K. V., & van Bruggen, A. H. C. (2000). Factors affecting the survival of Bremia lactucae sporangia deposited on lettuce leaves. Phytopathology, 90, 827–833.

    PubMed  CAS  Google Scholar 

  • Wu, B. M., Subbarao, K. V., & van Bruggen, A. H. C. (2005). Analyses of the relationships between lettuce downy mildew and weather variables using geographic information system techniques. Plant Disease, 89, 90–96.

    Google Scholar 

  • Xu, C., & Morris, P. F. (1998). External calcium controls the development strategy of Phytophthora sojae cysts. Mycologia, 90, 269–275.

    CAS  Google Scholar 

  • Yan, Z., Reddy, M. S., Ryu, C.-M., McInroy, J. A., Wilson, M., & Kloepper, J. W. (2002). Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathology, 92, 1329–1333.

    PubMed  CAS  Google Scholar 

  • Ziogas, B. N., Markoglou, A. N., Theodosiou, D. I., Anagnostou, A., & Boutopoulou, S. (2006). A high multi-drug resistance to chemically unrelated oomycete fungicides in Phytophthora infestans. European Journal of Plant Pathology, 115, 283–292.

    CAS  Google Scholar 

  • Zwankhuizen, M. J., & Zadoks, J. C. (2002). Phytophthora infestans’s 10-year truce with Holland: a long-term analysis of potato late-blight epidemics in the Netherlands. Plant Pathology, 51, 413–423.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike J. Jeger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 KNPV

About this chapter

Cite this chapter

Jeger, M.J., Pautasso, M. (2008). Comparative epidemiology of zoosporic plant pathogens. In: Lebeda, A., Spencer-Phillips, P.T.N., Cooke, B.M. (eds) The Downy Mildews - Genetics, Molecular Biology and Control. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8973-2_9

Download citation

Publish with us

Policies and ethics