Structure and variation in the wild-plant pathosystem: Lactuca serriola–Bremia lactucae

  • Aleš Lebeda
  • Irena Petrželová
  • Zbyněk Maryška
Chapter

Abstract

Over the past decade, extensive research on the wild-plant pathosystem, Lactuca serriola (prickly lettuce)–Bremia lactucae (lettuce downy mildew), has been conducted in the Czech Republic. Studies focused on pathogen occurrence and distribution, host range, variation in symptom expression and disease severity, interactions of B. lactucae with another fungal species (Golovinomyces cichoracearum) on L. serriola, variation in resistance within natural populations of L. serriola, the structure and dynamics of virulence within populations of B. lactucae, sexual reproduction of B. lactucae, and a comparison of virulence structure and changes in B. lactucae populations occurring in wild (L. serriola) and crop (L. sativa) pathosystems. The incidence of B. lactucae on naturally growing L. serriola and other Asteraceae was recorded. Lactuca serriola was the most commonly occurring host species, followed by Sonchus oleraceus. Over the duration of these studies, the incidence of B. lactucae in L. serriola populations varied between 45–87%. Disease incidence and disease prevalence were partly related to the size, density and different habitats of L. serriola populations. In addition to B. lactucae infection, infection by the lettuce powdery mildew fungus (Golovinomyces cichoracearum) was quite common, including co-infection. Variation in resistance to B. lactucae was studied by using ten isolates (NL and BL races with known virulence patterns) at a metapopulation level, i.e. 250 L. serriola samples representing 16 populations from the Czech Republic (CZ). Our comparisons revealed broad variation in host resistance among host populations and also intrapopulation variability. In the CZ populations, 45 resistance phenotypes were recorded, the most frequent were race-specific reaction patterns. Structural and temporal changes in virulence variation of B. lactucae populations on L. serriola were studied during 1998–2005. Altogether, 313 isolates of B. lactucae originating from the Czech Republic were examined for the presence of 32 virulence factors (v-factors), and 93 different virulence phenotypes (v-phenotypes) were recorded. A study of v-factor frequency showed that common v-factors in B. lactucae populations match some of the race-specific resistance genes/factors (Dm genes or R-factors) originating from L. serriola. The highest frequency was recorded by v-factors v7, v11, v15–17, and v24–30. In contrast, v-factors (e.g. v1–4, 6, and 10) matching Dm genes originating from L. sativa were very rare. This demonstrates the close adaptation of B. lactucae virulence to the host (L. serriola) genetic background. Temporal changes in virulence frequencies over the period were recorded. In many v-factors (v11, v14, v16, and v25–28), fluctuations were observed, some (v14 and v17) shifting to higher frequencies, and others (v5/8 and v23) decreasing. The occurrence of mating types was studied (1997–1999) in a set of 59 B. lactucae isolates. Both compatibility types (B1 and B2) were recorded; however the majority of the isolates (96%) were type B2. A comparative study of B. lactucae virulence variation between the wild (L. serriola) and crop (L. sativa) pathosystems showed major differences. Migration and gene flow between both pathosystems and the potential danger of wild B. lactucae populations for cultivated lettuce are discussed. This paper summarizes comprehensive and unique research on an oomycete pathogen (B. lactucae) that is shared between a crop (lettuce, L. sativa) and its close wild relative (prickly lettuce, L. serriola). The data demonstrate clear evidence about race-specific interactions, variation and changes in virulence, and coevolutionary relationships in the wild pathosystem L. serriolaB. lactucae. Conclusions contribute to the broadening and better understanding of gene-for-gene systems in natural host–pathogen populations and their relationships to crop pathosystems.

Keywords

Disease incidence Disease prevalence Gene flow Gene-for-gene Host range Intra- and inter-population variability Lettuce downy mildew Lettuce powdery mildew Metapopulation Migration Natural plant communities Prickly lettuce Race-specific resistance Virulence structure Wild- and crop-pathosystems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achar, P. N. (1996). First report of downy mildew disease in lettuce caused by Bremia lactucae in Natal, Southern Africa. Plant Disease, D-1996-0229-01N, (on-line).Google Scholar
  2. Beharav, A., Lewinsohn, D., Lebeda, A., & Nevo, E. (2006). New wild Lactuca genetic resources with resistance against Bremia lactucae. Genetic Resources and Crop Evolution, 53, 467–474.CrossRefGoogle Scholar
  3. Bevan, J. R., Clarke, D. D., & Crute, I. R. (1993). Resistance to Erysiphe fischeri in two populations of Senecio vulgaris. Plant Pathology, 42, 636–646.CrossRefGoogle Scholar
  4. Bonnier, F. J. M., Reinink, K., & Groenwold, R. (1992). New sources of major gene resistance in Lactuca to Bremia lactucae. Euphytica, 61, 203–211.CrossRefGoogle Scholar
  5. Braun, U. (1995). The powdery mildews (Erysiphaceae) of Europe. Jena: Gustav Fischer Verlag.Google Scholar
  6. Burdon, J. J. (1987). Diseases and plant population biology. Cambridge: Cambridge University Press.Google Scholar
  7. Burdon, J. J. (1997). The evolution of gene-for-gene interactions in natural pathosystems. In I. R. Crute, E. B. Holub, & J. J. Burdon (Eds.), The gene-for-gene relationships in plant–parasite interactions (pp. 245–262). Wallingford, UK: CAB International.Google Scholar
  8. Burdon, J. J., & Jarosz, A. M. (1991). Host–pathogen interactions in natural populations of Linum marginale and Melampsora lini: I. Patterns of resistance and racial variation in a large host population. Evolution, 45, 205–217.CrossRefGoogle Scholar
  9. Burdon, J. J., Thrall, P. H., & Ericson, L. (2006). The current and future dynamics of disease in plant communities. Annual Review of Phytopathology, 44, 19–39.PubMedCrossRefGoogle Scholar
  10. Burdon, J. J., Wennström, A., Elmqvist, T., & Kirby, G. C. (1996). The role of race specific resistance in natural plant populations. Oikos, 76, 411–416.CrossRefGoogle Scholar
  11. Carlsson-Granér, U. (2006). Disease dynamics, host specificity and pathogen persistence in isolated host populations. Oikos, 112, 174–184.CrossRefGoogle Scholar
  12. Carlsson-Granér, U., & Thrall, P. H. (2002). The spatial distribution of plant populations, disease dynamics and evolution of resistance. Oikos, 97, 97–110.CrossRefGoogle Scholar
  13. Cooke, B. M., Jones, D. G., & Kaye, B. (Eds.) (2006). The Epidemiology of plant diseases. Dordrecht: Springer.Google Scholar
  14. Cousens, R., & Croft, A. M. (2000). Weed populations and pathogens. Weed Research, 40, 63–82.CrossRefGoogle Scholar
  15. Crute, I. R. (1987). The geographical distribution and frequency of virulence determinants in Bremia lactucae: Relationships between genetic control and host selection. In M. S. Wolfe & C. E. Caten (Eds.), Populations of plant pathogens: Their dynamics and genetics (pp. 193–212). Oxford, UK: Blackwell Scientific Publications.Google Scholar
  16. Crute, I. R. (1990). Resistance to Bremia lactucae (downy mildew) in British populations of Lactuca serriola (prickly lettuce). In J. J. Burdon & S. R. Leather (Eds.), Pests, pathogens and plant communities (pp. 203–217). Oxford: Blackwell Scientific Publications.Google Scholar
  17. Crute, I. R. (1992a). From breeding to cloning (and back again?): a case study with lettuce downy mildew. Annual Review of Phytopathology, 30, 485–506.PubMedCrossRefGoogle Scholar
  18. Crute, I. R. (1992b). Downy mildew of lettuce. In H. S. Chaube, J. Kumar, A. N. Mukhopadhyay, & U. S. Singh (Eds.), Plant diseases of international importance. vol. ii. diseases of vegetable and oil seed crops (pp. 165–185). Englewood Cliffs, New Jersey: Prentice Hall.Google Scholar
  19. Crute, I. R., & Dickinson, C. H. (1976). The behaviour of Bremia lactucae on cultivars of Lactuca sativa and other composites. Annals of Applied Biology, 82, 433–450.CrossRefGoogle Scholar
  20. Crute, I. R., & Dixon, G. R. (1981). Downy mildew diseases caused by the genus Bremia Regel. In D. M. Spencer (Ed.), The downy mildews (pp. 421–460). London, New York, San Francisco: Academic Press.Google Scholar
  21. Crute, I. R., & Johnson, A. G. (1976). The genetic relationship between races of Bremia lactucae and cultivars of Lactuca sativa. Annals of Applied Biology, 83, 125–137.CrossRefGoogle Scholar
  22. Datnoff, L. E., Nagata, R. T., & Raid, R. N. (1994). Pathotyping of Bremia lactucae in Florida. Plant Disease, 78, 584–857.Google Scholar
  23. Delmotte, F., Bucheli, E., & Shykoff, J. A. (1999). Host and parasite population structure in a natural plant–pathogen system. Heredity, 82, 300–308.PubMedCrossRefGoogle Scholar
  24. Dinoor, A., & Eshed, N. (1984). The role and importance of pathogens in natural plant communities. Annual Review of Phytopathology, 22, 443–466.CrossRefGoogle Scholar
  25. Doležalová, I., Lebeda, A., & Křístková, E. (2001). Prickly lettuce (Lactuca serriola L.) germplasm collecting and distribution study in Slovenia and Sweden. Plant Genetic Resources Newsletter, 128, 41–44.Google Scholar
  26. Drenth, A. (2004). Fungal epidemics—does spatial structure matter. New Phytologist, 163, 4–7.CrossRefGoogle Scholar
  27. Farrara, B., Illott, T. W., & Michelmore, R. W. (1987). Genetic analysis of factors for resistance to downy mildew (Bremia lactucae) in lettuce (Lactuca sativa). Plant Pathology, 36, 499–514.CrossRefGoogle Scholar
  28. Feráková, V. (1977). The genus Lactuca in Europe. Czechoslovakia, Bratislava: Komenský University Press.Google Scholar
  29. Frantzen, J. (2000). Resistance in populations. In A. J. Slusarenko, R. R. S. Fraser, & L. C. van Loon (Eds.), Mechanisms of resistance to plant diseases (pp. 161–187). Dordrecht: Kluwer.Google Scholar
  30. Gilbert, G. S. (2002). Evolutionary ecology of plant diseases in natural ecosystems. Annual Review of Phytopathology, 40, 13–43.PubMedCrossRefGoogle Scholar
  31. Hammond-Kosack, K. E., & Jones, J. D. G. (1997). Plant disease resistance genes. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 575–607.PubMedCrossRefGoogle Scholar
  32. Hooftman, D. A. P., Nieuwenhuis, B. P. S., Posthuma, K. I., Oostermeijer, J. G. B., & den Nijs, H. J. C. M. (2007). Introgression potential of downy mildew resistance from lettuce to Lactuca serriola and its relevance for plant fitness. Basic and Applied Ecology, 8, 135–146.CrossRefGoogle Scholar
  33. Hooftman, D. A. P., Oostermeijer, J. G. B., & den Nijs, H. J. C. M. (2006). Invasive behaviour of Lactuca serriola (Asteraceae) in the Netherlands: Spatial distribution and ecological amplitude. Basic and Applied Ecology, 7, 507–519.CrossRefGoogle Scholar
  34. Jeuken, M., & Lindhout, P. (2002). Lactuca saligna, a non-host for lettuce downy mildew (Bremia lactucae), harbors a new race-specific Dm gene and three QTLs for resistance. Theoretical and Applied Genetics, 105, 384–391.PubMedCrossRefGoogle Scholar
  35. Judelson, H. S., & Michelmore, R. W. (1992). Temperature and genotype interactions in the expression of host resistance in lettuce downy mildew. Physiological and Molecular Plant Pathology, 40, 233–245.CrossRefGoogle Scholar
  36. Koike, S. T., & Ochoa, O. E. (2007). Downy mildew caused by Bremia lactucae on strawflower (Helichrysum bracteatum) in California. Plant Disease, 91, 326.CrossRefGoogle Scholar
  37. Křístková, E., & Lebeda, A. (1999). Collection of Lactuca spp. genetic resources in the Czech Republic. In A. Lebeda & E. Křístková (Eds.), Eucarpia leafy vegetables ‘99, Proceedings of the Eucarpia Meeting on Leafy Vegetables Genetics and Breeding (pp. 109–116). Olomouc, Czech Republic: Palacký University in Olomouc.Google Scholar
  38. Kuang, H., Ochoa, O. E., Nevo, E., & Michelmore, R. W. (2006). The disease resistance gene Dm3 is infrequent in natural populations of Lactuca serriola due to deletions and frequent gene conversions at the RGC2locus. The Plant Journal, 47, 38–48.PubMedCrossRefGoogle Scholar
  39. Laine, A.-L. (2006). Evolution of host resistance: looking for coevolutionary hotspots at small spatial scales. Proceedings of the Royal Society, 273, 267–273.CrossRefGoogle Scholar
  40. Lebeda, A. (1979). Identification of races of Bremia lactucae in Czechoslovakia. Journal of Phytopathology, 94, 208–217.CrossRefGoogle Scholar
  41. Lebeda, A. (1981). Population genetics of lettuce downy mildew (Bremia lactucae). Journal of Phytopathology, 101, 228–239.CrossRefGoogle Scholar
  42. Lebeda, A. (1982). Population genetic aspects in the study of phytopathogenic fungi. Acta Phytopathologica Academiae Scientarum Hungarica, 17, 215–219.Google Scholar
  43. Lebeda, A. (1984). Response of differential cultivars of Lactuca sativa to Bremia lactucae isolates from Lactuca serriola. Transactions of the British Mycological Society, 83, 491–494.CrossRefGoogle Scholar
  44. Lebeda, A. (1986). Specificity of interactions between wild Lactuca species and Bremia lactucae isolates from Lactuca serriola. Journal of Phytopathology, 117, 54–64.CrossRefGoogle Scholar
  45. Lebeda, A. (1989). Response of lettuce cultivars carrying the resistance gene Dm11 to isolates of Bremia lactucae from Lactuca serriola. Plant Breeding, 102, 311–316.CrossRefGoogle Scholar
  46. Lebeda, A. (1990). The location of sources of field resistance to Bremia lactucae in wild Lactuca species. Plant Breeding, 105, 75–77.CrossRefGoogle Scholar
  47. Lebeda, A. (2002). Occurrence and variation in virulence of Bremia lactucae in natural populations of Lactuca serriola. In P. T. N. Spencer-Phillips, U. Gisi, & A. Lebeda (Eds.), Advances in downy mildew research (pp. 179–183). The Netherlands, Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  48. Lebeda, A., & Blok, I. (1990). Sexual compatibility types of Bremia lactucae isolates originating from Lactuca serriola. Netherlands Journal of Plant Pathology, 96, 51–54.CrossRefGoogle Scholar
  49. Lebeda, A., & Boukema, I. W. (1991). Further investigation of the specificity of interactions between wild Lactuca spp. and Bremia lactucae isolates from Lactuca serriola. Journal of Phytopathology, 133, 57–64.CrossRefGoogle Scholar
  50. Lebeda, A., Doležalová, I., Feráková, V., & Astley, D. (2004). Geographical distribution of wild Lactuca species (Asteraceae, Lactuceae). The Botanical Review, 70, 328–356.CrossRefGoogle Scholar
  51. Lebeda, A., Doležalová, I., Křístková, E., Dehmer, K. J., Astley, D., van de Wiel, C. C. M., et al. (2007a). Acquisition and ecological characterization of Lactuca serriola L. germplasm collected in the Czech Republic, Germany, the Netherlands and United Kingdom. Genetic Resources and Crop Evolution, 54, 555–562.CrossRefGoogle Scholar
  52. Lebeda, A., Doležalová, I., Křístková, E., & Mieslerová, B. (2001b). Biodiversity and ecogeography of wild Lactuca spp. in some European countries. Genetic Resources and Crop Evolution, 48, 153–164.CrossRefGoogle Scholar
  53. Lebeda, A., & Petrželová, I. (2001). Occurrence and characterization of race-specific resistance to Bremia lactucae in wild Lactuca spp. In Eucarpia section genetic resources—Broad variation and precise characterization — limitation for the future (p. 93)”. Poznań, May 16.–20. 2001—Book of abstracts.Google Scholar
  54. Lebeda, A., & Petrželová, I. (2004a). Variation and distribution of virulence phenotypes of Bremia lactucae in natural populations of Lactuca serriola. Plant Pathology, 53, 316–324.CrossRefGoogle Scholar
  55. Lebeda, A., & Petrželová, I. (2004b). Occurrence of race-specific resistance to Bremia lactucae in Lactuca serriola germplasm originating from four European countries. In J. Vollmann, H. Grausgruber, & P. Ruckenbauer (Eds.), Genetic variation for plant breeding (pp. 113–116). Vienna, Austria: EUCARPIA & BOKU—University of Natural Resources and Applied Life Sciences.Google Scholar
  56. Lebeda, A., & Petrželová, I. (2005). Comparison of resistance to Bremia lactucae in populations of Lactuca serriola occurring in Central Europe (Czech Republic) and the British Isles (England, U.K.). In S. Bullitta (Ed.), XVII Eucarpia Genetic Resources Section Meeting;Plant Genetic Resources of Geographical andotherislands (Conservation, evaluation and use for plant breeding) (p. 14)”. Castelsardo (Italy), 30 March–2 April 2005; Book of Abstracts, CNR-ISPAAM, sezione Sassari, Italy.Google Scholar
  57. Lebeda, A., & Petrželová, I. (2007). Race-specific resistance to Bremia lactucae in European populations of Lactuca serriola. In: EUCARPIA Leafy Vegetables 2007, Conference Abstracts (p. 11). 18–20 April 2007; University of Warwick, Warwick HRI, UK, 2007; Oral Presentations.Google Scholar
  58. Lebeda, A., Petrželová, I., & Maryška, Z. (2007c). Comparative analysis of variation and dynamics of virulence of Bremia lactucae populations on Lactuca sativa and Lactuca serriola. In B. MacDonald, P. Brunner, P. Ceresini & Lebeda, A. (Eds.), Population and evolutionary biology of fungal symbionts (pp. 50–51.). Book of Abstracts, International Meeting, April 29–May 4, 2007, Ascona, Switzerland; ETHZ—Swiss Federal Institute of Technology of Zurich and Palacký University in Olomouc; Zurich and Olomouc. JOLA, v.o.s., Kostelec na Hané, Czech Republic.Google Scholar
  59. Lebeda, A., Pink, D. A. C., & Astley, D. (2002). Aspects of the interactions between wild Lactuca spp. and related genera and lettuce downy mildew (Bremia lactucae). In P. T. N. Spencer-Phillips, U. Gisi, & A. Lebeda (Eds.), Advances in downy mildew research (pp. 85–117). The Netherlands, Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  60. Lebeda, A., Pink, D. A. C., & Mieslerova, B. (2001a). Host–parasite specificity and defense variability in the Lactuca spp.–Bremia lactucae pathosystem. Journal of Plant Pathology, 83, 25–35.Google Scholar
  61. Lebeda, A., Ryder, E. J., Grube, R., Doležalová, I., & Křístková, E. (2007b). Lettuce (Asteraceae; Lactuca spp.), Chapter 9. In R. Singh (Ed.), Genetic resources, chromosome engineering, and crop improvement series, volume 3—vegetable crops (pp. 377–472). Boca Raton, FL, USA: CRC Press.Google Scholar
  62. Lebeda, A., & Schwinn, F. J. (1994). The downy mildews—an overview of recent research progress. Journal of Plant Diseases and Protection, 101, 225–254.Google Scholar
  63. Lebeda, A., & Syrovátko, P. (1988). Specificity of Bremia lactucae isolates from Lactuca sativa and some Asteraceae plants. Acta Phytopathologica et Entomologica Hungarica, 23, 39–48.Google Scholar
  64. Lebeda, A., & Zinkernagel, V. (2003a). Evolution and distribution of virulence in the German population of Bremia lactucae. Plant Pathology, 52, 41–51.CrossRefGoogle Scholar
  65. Lebeda, A., & Zinkernagel, V. (2003b). Characterization of new highly virulent German isolates of Bremia lactucae and efficiency of resistance in wild Lactuca spp. germplasm. Journal of Phytopathology, 151, 274–282.Google Scholar
  66. Lindow, S. (2006). Phyllosphere microbiology: a perspective. In M. J. Bailey, A. K. Lilley, T. M. Timms-Wilson, & P. T. N. Spencer-Phillips (Eds.), Microbial ecology of aerial plant surfaces (pp. 1–20). Wallingford, UK: CABI International.Google Scholar
  67. Maisonneuve, B. (2003). Lactuca virosa, a source of disease resistance genes for lettuce breeding: results and difficulties for gene introgression. In T. J. L. van Hintum, A. Lebeda, D. A. C. Pink, & J. W. Schut (Eds.), Eucarpia leafy vegetables ‘03 (pp. 31–35). The Netherlands: CGN Wageningen.Google Scholar
  68. Marlatt, R. B. (1974). Biology, morphology, taxonomy and disease relations of the fungus Bremia, Florida. Agricultural Experimental Station Technical Bulletin, 764, 1–25.Google Scholar
  69. McDermott, J. M., & McDonald, B. A. (1993). Gene flow in plant pathosystems. Annual Review of Phytopathology, 31, 353–373.CrossRefGoogle Scholar
  70. McDonald, B. A., & Linde, C. (2002). Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology, 40, 349–379.PubMedCrossRefGoogle Scholar
  71. Michelmore, R. W. (1981). Sexual and asexual reproduction sporulation in the downy mildews. In D. M. Spencer (Ed.), The downy mildews (pp. 165–181). London: Academic.Google Scholar
  72. Mieslerová, B., Petrželová, I., Lebeda, A., & Česneková, E. (2007). Occurrence of lettuce downy mildew and powdery mildew in natural populations of prickly lettuce. In A. Lebeda & P. T. N. Spencer-Phillips (Eds.), Advances in downy mildew research, vol. 3. Proceedings of The 2nd International Downy Mildews Symposium (pp. 59–64). v.o.s., Kostelec na Hané (Czech Republic): Palacký University in Olomouc and JOLA.Google Scholar
  73. Newton, A., & Pons-Kühnemann, J. (2007). Induced resistance in natural ecosystems and pathogen population biology: exploiting interactions. In D. Walters, A. Newton, & G. Lyon (Eds.), Induced resistance for plant defence. a sustainable approach to crop protection (pp. 133–142). Oxford, UK: Blackwell.CrossRefGoogle Scholar
  74. Petrželová, I., & Lebeda, A. (2003). Distribution of compatibility types and occurrence of sexual reproduction in natural populations of Bremia lactucae on wild Lactuca serriola plants. Acta Phytopathologica et Entomologica Hungarica, 38, 43–52.CrossRefGoogle Scholar
  75. Petrželová, I., & Lebeda, A. (2004a). Comparison of virulence of Bremia lactucae isolates originating from Lactuca sativa and Lactuca serriola. Acta fytotechnica et zootechnica, 7, 248–250.Google Scholar
  76. Petrželová, I., & Lebeda, A. (2004b). Occurrence of Bremia lactucae in natural populations of Lactuca serriola. Journal of Phytopathology, 152, 391–398.CrossRefGoogle Scholar
  77. Petrželová, I., & Lebeda, A. (2004c). Temporal and spatial variation in virulence of natural populations of Bremia lactucae occurring on Lactuca serriola. In P. T. N. Spencer-Phillips & M. Jeger (Eds.), Advances in downy mildew research, vol. 2 (pp. 141–163). The Netherlands, Dordrecht: Kluwer.Google Scholar
  78. Scherm, H., & van Bruggen, A. H. C. (1994). Weather variables associated with infection of lettuce by downy mildew (Bremia lactucae) in coastal California. Phytopathology, 84, 860–865.CrossRefGoogle Scholar
  79. Sharaf, K., Lewinsohn, D., Nevo, E., & Beharav, A. (2007). Virulence patterns of Bremia lactucae in Israel. Phytoparasitica, 35, 100–108.CrossRefGoogle Scholar
  80. Su, H., van Bruggen, A. H. C., Subbarao, K. V., & Scherm, H. (2004). Sporulation of Bremia lactucae affected by temperature, relative humidity, and wind in controlled conditions. Phytopathology, 94, 396–401.PubMedCrossRefGoogle Scholar
  81. Thrall, P. H., & Burdon, J. J. (2000). Effect of resistance variation in a natural plant host–pathogen metapopulation on disease dynamics. Plant Pathology, 49, 767–773.CrossRefGoogle Scholar
  82. Thrall, P. H., & Burdon, J. J. (2003). Evolution of virulence in a plant host–pathogen metapopulation. Science, 299, 1735–1737.PubMedCrossRefGoogle Scholar
  83. Thrall, P. H., & Burdon, J. J. (2004). Host–pathogen life history interactions affect biological control success. Weed Technology, 18(Suppl. S), 1735–1737.Google Scholar
  84. Thrall, P. H., Burdon, J. J., & Young, A. (2001). Variation in resistance and virulence among demes of a plant host–pathogen metapopulation. Journal of Ecology, 89, 736–748.Google Scholar
  85. Trimboli, D. S., & Crute, I. R. (1983). The specific virulence characteristics of Bremia lactucae (lettuce downy mildew) in Australia. Australasian Plant Pathology, 12, 58–60.CrossRefGoogle Scholar
  86. Van Ettekoven, K., & Van der Arend, A. J. M. (1999). Identification and denomination of “new” races of Bremia lactucae. In A. Lebeda & E. Křístková (Eds.), Eucarpia leafy vegetables ‘99 (pp. 171–175). Olomouc, Czech Republic: Palacký University.Google Scholar
  87. Vieira, B. S., & Barreto, R. W. (2006). First record of Bremia lactucae infecting Sonchus oleraceus and Sonchus asper in Brazil and its infectivity to lettuce. Journal of Phytopathology, 154, 84–87.CrossRefGoogle Scholar
  88. Weaver, S. E., & Downs, M. P. (2003). The biology of Canadian weeds. 122. Lactuca serriola L. Canadian Journal of Plant Science, 83, 619–628.Google Scholar
  89. Zadoks, J. C., & Schein, R. D. (1979). Epidemiology and plant disease management. New York: Oxford University Press.Google Scholar

Copyright information

© KNPV 2008

Authors and Affiliations

  • Aleš Lebeda
    • 1
  • Irena Petrželová
    • 1
  • Zbyněk Maryška
    • 1
  1. 1.Faculty of Science, Department of BotanyPalacký University in OlomoucOlomoucCzech Republic

Personalised recommendations