Clock Recovery and Equalization Techniques for Lossy Channels in Multi Gb/s Serial Links

  • M. Pozzoni
  • S. Erba
  • P. Viola
  • M. Pisati
  • E. Depaoli
  • D. Sanzogni
  • R. Brama
  • D. Baldi
  • M. Repossi
  • F. Svelto

Abstract

A fully integrated 8.5 Gb/s multi-standard DFE receiver for SATA, SAS and FC is presented. This work addresses the impact that data storage communication standards have on data equalization and clock recovery. The data storage environment and the implication on receiver architecture are described. Implementation of CMOS high speed circuits is discussed and experiments of realized prototypes are presented. The main design parameters of early-late digital clock recoveries are analyzed, and their relationship to system requirements is investigated. At last, additional architectures for higher communication speeds are introduced, together with their potential application in the data storage environment.

Keywords

Microwave Attenuation Assure Summing Demultiplexing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Sorna, T. Beukema et al., “A 6.4 Gb/s CMOS SerDes Core with Feedforward and Decision-Feedback Equalization”, ISSCC Dig. of Tech. Papers, pp. 62–63, Feb. 2005.Google Scholar
  2. 2.
    R. Payne, B. Bhakta et al., “A 6.25 Gb/s Binary Adaptive DFE with First Post-Cursor Tap Cancellation for Serial Backplane Communications”, ISSCC Dig. of Tech. Papers, pp. 68–69, Feb. 2005.Google Scholar
  3. 3.
    M. Meghelli, S. Rylov et al., “A 10 Gb/s 5-Tap-DFE-4-Tap-FFE transceiver in 90 nm CMOS”, ISSCC Dig. of Tech. Papers, pp. 80–81, Feb. 2006.Google Scholar
  4. 4.
    K. J. Wong, C. K. Yang, “A Serial-Link Transceiver with Transition Equalization”, ISSCC Dig. of Tech. Papers, pp. 82–83, Feb. 2006.Google Scholar
  5. 5.
    Fibre Channel, “Physical Interface-4 (FC-PI-4)”, Int. Committee for Information Technology Standardization (INCITS), Rev. 7, Sept. 2007.Google Scholar
  6. 6.
    R. Kajley, P. Hurst, “A Mixed-Signal Decision-Feedback Equalizer That Uses a Look-Ahead Architecture”, IEEE J. Solid-State Circuits, Vol. 32, No. 3, March 1997.Google Scholar
  7. 7.
    S. Gondi, B. Razavi, “Equalization and Clock and Data Recovery Techniques for 10-Gb/s CMOS Serial-Link Receivers”, IEEE J. Solid-State Circuits, Vol. 42, No. 9, September 2007.Google Scholar
  8. 8.
    M. Harwood, N. Warke et al., “A 12.5 Gb/s SerDes in 65 nm CMOS Using a Baud-Rate ADC with Digital Receiver Equalization and Clock Recovery”, ISSCC Dig. of Tech. Papers, pp. 436–437, Feb. 2007.Google Scholar
  9. 9.
    J. L. Sonntag, J. Stonick, “A Digital Clock and Data Recovery Architecture for Multi-Gigabit/s Binary Links”, IEEE J. Solid-State Circuits, Vol. 41, No. 8, August 2006.Google Scholar
  10. 10.
    K. Yamaguchi, K. Sunaga et al., “12 Gb/s Duobinary Signaling with x2 Oversampled Edge Equalization”, ISSCC Dig. of Tech. Papers, pp. 70–71, Feb. 2005.Google Scholar
  11. 11.
    J. H. Sinsky, M. Duelk et al., “High-Speed Electrical Backplane Transmission Using Duobinary Signaling”, IEEE Trans. On Microwave Theory and Techniques, Vol. 53, No. 1, January 2005Google Scholar
  12. 12.
    V. Stojanovic, A. Ho et al., “Autonomous Dual-Mode (PAM2/4) Serial Link Transceiver With Adaptive Equalization and Data Recovery”, IEEE J. Solid-State Circuits, Vol. 40, No. 4, April 2005.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • M. Pozzoni
    • 1
  • S. Erba
  • P. Viola
  • M. Pisati
  • E. Depaoli
  • D. Sanzogni
  • R. Brama
  • D. Baldi
  • M. Repossi
  • F. Svelto
  1. 1.ST MicroelectronicsPaviaItaly

Personalised recommendations