Skip to main content

Thermodynamics and Resource Consumption: Concepts, Methodologies, and the Case of Copper

  • Reference work entry
Handbook of Sustainable Engineering
  • 5977 Accesses

Abstract

Analysis and minimization of resource consumption is an essential aspect of sustainability. Engineers in this field need to be equipped with concepts and methodologies for assessment and sustainable design of products and processes. Thermodynamics offers these concepts and methodologies. In the current debate on material flows, the throughput of matter and energy is the primary focus. Consumption, however, starts when material and energy is transformed and loses its potential to be useful in further products or processes. On the physical level, this loss of potential utility is well described by entropy production or exergy destruction, two related concepts from thermodynamics. Using these concepts, methodologies for analyzing resource consumption were constructed and have been successfully applied to a large number of processes, products, and services. Here, a very brief introduction to thermodynamics is given to enable the interested reader to understand the underlying concepts and help in the application of thermodynamics to analyze resource consumption. Established measures for resource consumption can be grouped into those approaches which are based on the first law of thermodynamics (the conservation of energy and matter) and those approaches which are based on the second law of thermodynamics (entropy production and the devaluation of energy and matter). A brief summary of the currently used approaches is given and how they relate to the thermodynamic interpretation of resource consumption. Exergy and entropy analysis are introduced as analytical tools and also briefly explained, with recommendations for further self-study to get more familiar with the methodologies. An example, copper making from sulfidic ore concentrates is presented as a case study for the application of entropy analysis, and the results are compared to results from other (exergy) analyses. Finally, an interpretation of entropy production in the context of ecological sustainability and finite resources is offered, based on the finite entropy disposal rate of the earth, which enables the reader to evaluate the meaning of the presented results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • S.H. Amini, J.A.M. Remmerswaal, M.B. Castro, M.A. Reuter, Quantifying the quality loss and resource efficiency of recycling by means of exergy analysis. J. Clean. Prod. 15(10), 907–913 (2007)

    Article  Google Scholar 

  • G. Angerer, L. Erdmann, F. Marscheider-Weidemann, M. Scharp, A. Lüllmann, V. Handke, M. Marwede, Rohstoffe für Zukunftstechnologien: Einfluss des branchenspezifischen Rohstoffbedarfs in rohstoffintensiven Zukunftstechnologien auf die zukünftige Rohstoffnachfrage. ISI-Schriftenreihe Innovationspotenziale (Fraunhofer Verlag, Stuttgart, 2009)

    Google Scholar 

  • I. Aoki, Entropy principle for human development, growth and aging. J. Theor. Biol. 150(2), 215–223 (1991)

    Article  Google Scholar 

  • I. Aoki, Entropy production in living systems – from organisms to ecosystems. Thermochim. Acta 250(2), 359–370 (1995)

    Article  Google Scholar 

  • I. Aoki, Entropy law in aquatic communities and the general entropy principle for the development of living systems. Ecol. Model. 215(1), 89–92 (2008)

    Article  Google Scholar 

  • K. Arrow, P. Dasgupta, L. Goulder, G. Daily, P. Ehrlich, G. Heal, S. Levin, K. Mäler, S. Schneider, Are we consuming too much? J. Econ. Perspect. 18(3), 147–172 (2004)

    Article  Google Scholar 

  • K. Arrow, G. Daily, P. Dasgupta, P. Ehrlich, L. Goulder, G. Heal, S. Levin, K. Mäler, S. Schneider, D. Starrett, B. Walker, Consumption, investment, and future well-being reply to Daly et al. Conserv. Biol. 21(5), 1363–1365 (2007)

    Article  Google Scholar 

  • R.U. Ayres, L.W. Ayres, A. Masini, An application of exergy accounting to five basic metal industries, in Sustainable Metals Management: Securing Our Future – Steps Towards a Closed Loop Economy, ed. by A. von Gleich, R.U. Ayres, S. Gößling-Reisemann. Eco-Efficiency in Industry and Science, vol. 19 (Springer, Dordrecht, 2006), pp. 141–194

    Google Scholar 

  • I. Barin, Thermochemical Data of Pure Substances, 3rd edn. (VCH, Weinheim, 1995)

    Book  Google Scholar 

  • A. Bejan, Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes. Advanced Topics in Mechanical Engineering Series, vol. 2 (CRC, Boca Raton, 1996)

    Google Scholar 

  • A. Bejan, G. Tsatsaronis, M.J. Moran, Thermal Design and Optimization (Wiley, New York, 1996)

    MATH  Google Scholar 

  • L. Borel, D. Favrat, Thermodynamics and Energy Systems Analysis: From Energy to Exergy (EFPL/CRC, Lausanne, 2010)

    Google Scholar 

  • M.E. Bösch, S. Hellweg, M.A.J. Huijbregts, R. Frischknecht, Applying cumulative exergy demand (CExD) indicators to the ecoinvent database. Int. J. Life Cycle Assess. 12(3), 181–190 (2007)

    Google Scholar 

  • BP, BP Statistical review of world energy June 2009: spreadsheet file (2009), http://www.bp.com/liveassets/bp_internet/globalbp/globalbp_uk_english/reports_and_publications/statistical_energy_review_2008/STAGING/local_assets/2009_downloads/statistical_review_of_world_energy_full_report_2009.xls. Accessed 28 May 2011

  • V.M. Brodyansky, The Efficiency of Industrial Processes: Exergy Analysis and Optimization (Elsevier, Amsterdam, 1994)

    Google Scholar 

  • M.B.G. Castro, J.A.M. Remmerswaal, M.A. Reuter, U.J.M. Boin, A thermodynamic approach to the compatibility of materials combinations for recycling. Resour. Conserv. Recycl. 43(1), 1–19 (2004)

    Article  Google Scholar 

  • Centre for Research in Computational Thermochemistry (CRCT), F*A*C*T – facility for the analysis of chemical thermodynamics: online database (2011), http://www.crct.polymtl.ca/fact/

  • R. Clausius, Über die bewegende Kraft der Wärme. Ann. Phys. 79, 368–397, 500–524 (1850)

    Article  Google Scholar 

  • L. Connelly, C.P. Koshland, Exergy and industrial ecology—part 1: an exergy-based definition of consumption and a thermodynamic interpretation of ecosystem evolution. Exergy 1(3), 146–165 (2001a)

    Article  Google Scholar 

  • L. Connelly, C.P. Koshland, Exergy and industrial ecology—part 2: a non-dimensional analysis of means to reduce resource depletion. Exergy 1(4):234–255 (2001b)

    Article  Google Scholar 

  • R.L. Cornelissen, Thermodynamics and sustainable development – the use of exergy analysis and the reduction of irreversibility. Dissertation, University of Twente, 1997

    Google Scholar 

  • R.L. Cornelissen, G.G. Hirs, The value of exergetic life cycle assessment besides LCA. Energy Convers. Manag. 43(9), 1417–1424 (2002)

    Article  Google Scholar 

  • H. Daly, B. Czech, D. Trauger, W. Rees, M. Grover, T. Dobson, S. Trombulak, Are we consuming too much-for what? Conserv. Biol. 21(5), 1359–1362 (2007)

    Article  Google Scholar 

  • W.G. Davenport, E.H. Partelpoeg, Flash Smelting: Analysis, Control and Optimization (Pergamon, Oxford, 1987)

    Google Scholar 

  • J. Dewulf, H. van Langenhove, Assessment of the sustainability of technology by means of a thermodynamically based life cycle analysis. Environ. Sci. Pollut. Res. Int. 9(4), 267–273 (2002a)

    Article  Google Scholar 

  • J. Dewulf, H. van Langenhove, Quantitative assessment of solid waste treatment systems in the industrial ecology perspective by exergy analysis. Environ. Sci. Technol. 36(5), 1130–1135 (2002b)

    Article  Google Scholar 

  • J. Dewulf, M.E. Bösch, B. de Meester, G. van der Vorst, H.V. Langenhove, S. Hellweg, M.A.J. Huijbregts, Cumulative exergy extraction from the natural environment (CEENE) a comprehensive life cycle impact assessment method for resource accounting. Environ. Sci. Technol. 41(24), 8477–8483 (2007)

    Article  Google Scholar 

  • W. Ebeling, A. Engel, R. Feistel, Physik der Evolutionsprozesse (Akademie-Verl., Berlin, 1990)

    MATH  Google Scholar 

  • European Commission, Economy-Wide Material Flow Accounts and Derived Indicators: A Methodological Guide (Office for Official Publications of the European Communities, Luxembourg, 2001)

    Google Scholar 

  • European Commission, Critical Raw Materials for the EU: Report of the Ad-hoc Working Group on defining critical raw materials, Brussels (2010)

    Google Scholar 

  • R.P. Feynman, R.B. Leighton, M.L. Sands, The Feynman Lectures on Physics. The Definitive and Extended Edition (Addison-Wesley, San Francisco/Harlow, 2009)

    Google Scholar 

  • N. Georgescu-Roegen, The Entropy Law and the Economic Process (Harvard University Press, Cambridge, 1971)

    Google Scholar 

  • P. Glansdorff, I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley, London, 1971)

    MATH  Google Scholar 

  • S. Gößling, Entropy production as a measure for resource use: method development and application to metallurgical processes. Dissertation. University of Hamburg, 2001, http://www.sub.uni-hamburg.de/opus/volltexte/2004/1182/

  • S. Gößling-Reisemann, What is resource consumption and how can it be measured?: Theoretical considerations. J. Ind. Ecol. 12(1), 10–25 (2008a)

    Article  Google Scholar 

  • S. Gößling-Reisemann, What is resource consumption and how can it be Measured? Application of entropy analysis to copper production. J. Ind. Ecol. 12(4), 570–582 (2008b)

    Article  Google Scholar 

  • S. Gößling-Reisemann, Entropy production and resource consumption in life cycle assessments, in Thermodynamics and the Destruction of Resources, ed. by B. Bakshi, T. Gutowski, D. Sekulic (Cambridge University Press, New York, 2011)

    Google Scholar 

  • S. Gößling-Reisemann, A. von Gleich, V. Knobloch, B. Cebulla, Bewertungsmaßstäbe für metallische Stoffströme: von Kritikalität bis Entropie, in Methoden der Stoffstromanalyse: Konzepte, agentenbasierte Modellierung und Ökobilanz, ed. by F. Beckenbach. Stoffstromanalysen, vol. 1, 1st edn. (Metropolis, Marburg, 2011)

    Google Scholar 

  • T. Graedel, D. van Beers, M. Bertram, K. Fuse, R. Gordon, A. Gritsinin, A. Kapur, R. Klee, R. Lifset, Multilevel cycle of anthropogenic copper. Environ. Sci. Technol. 38(4), 1242–1252 (2004)

    Article  Google Scholar 

  • C. Hagelüken, The challenge of open cycles – barriers to a closed loop economy demonstrated for consumer electronics and cars, in R’07 World Congress: Recovery of Materials and Energy for Resource Efficiency(EMPA, Davos, 2007)

    Google Scholar 

  • C. Hagelüken, M. Buchert, H. Stahl, Stoffströme der Platingruppenmetalle: Systemanalyse und Maßnahmen für eine nachhaltige Optimierung der Stoffströme der Platingruppenmetalle; Endbericht (GDMB-Medienverl., Clausthal-Zellerfeld, 2005)

    Google Scholar 

  • W.M. Haynes, D.R. Lide, CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data (CRC, Boca Raton, 2010)

    Google Scholar 

  • D. Janke, L. Savov, M.E. Vogel, Secondary materials in steel production and recycling, in Sustainable Metals Management: Securing Our Future – Steps Towards a Closed Loop Economy, ed. by A. von Gleich, R.U. Ayres, S. Gößling-Reisemann. Eco-Efficiency in Industry and Science, vol. 19 (Springer, Dordrecht, 2006), pp. 313–334

    Google Scholar 

  • Z. Kolenda, J. Donizak, A. Holda, J. Szmyd, M. Zembura, An analysis of cumulative energy and exergy consumption in copper production, in International Symposium ECOS’92: Conference Proceedings, Zaragoza (The American Society of Mechanical Engineers, New York, 1992), pp. 275–282

    Google Scholar 

  • D. Kondepudi, I. Prigogine, Modern Thermodynamics: From Heat Engines to Dissipative Structures (Wiley, Chichester, 1998)

    MATH  Google Scholar 

  • T.J. Kotas, The Exergy Method of Thermal Plant Analysis (Krieger Publishing, Malabar, 1995)

    Google Scholar 

  • P. Linstrom, W. Mallard (eds.), NIST Chemistry WebBook (http://webbook.nist.gov): NIST Standard Reference Database Number 69, June 2010. National Institute of Standards and Technology, Gaithersburg, 20899 (2010)

  • Merriam-Webster, Definition of “consumption” (2011), http://www.merriam-webster.com/dictionary/consumption. Accessed 28 May 2011

  • National Research Council (NRC), Minerals, Critical Minerals, and the U.S. Economy (The National Academies Press, Washington, DC, 2008)

    Google Scholar 

  • G. Nicolis, I. Prigogine, Self-organization in Non-equilibrium Systems: From Dissipative Structures to Order Through Fluctuations (Wiley, New York, 1977)

    Google Scholar 

  • Z. Rant, Exergie, ein neues Wort für technische Arbeitsfähigkeit. Forschung. Ing. Wesen 22, 36–37 (1956)

    Google Scholar 

  • H. Rechberger, Entwicklung einer Methode zur Bewertung von Stoffbilanzen in der Abfallwirtschaft. Wiener Mitteilungen, vol. 158 (Technical University Institute für Wassergüte und Abfallwirtschaft, Wien, 1999)

    Google Scholar 

  • H. Rechberger, T. Graedel, The contemporary European copper cycle: statistical entropy analysis. Ecol. Econ. 42(1), 59–72 (2002)

    Article  Google Scholar 

  • M.A. Reuter, U.M.J. Boin, A. van Schaik, E.V. Verhoef, K. Heiskanen, Y. Yang, G. Georgalli, The Metrics of Material and Metal Ecology: Harmonizing the Resource, Technology and Environmental Cycles (Elsevier, Amsterdam, 2005)

    Google Scholar 

  • M. Ritthoff, H. Rohn, C. Liedtke, Calculating MIPS: Resource Productivity of Products and Services. Wuppertal Spezial, vol. 27 (Wuppertal-Institute for Climate, Environment and Energy, Wuppertal, 2002)

    Google Scholar 

  • M.A. Rosen, Economics and Exergy: An Enhanced Approach to Energy Economics (Nova Science Publisher’s, Hauppauge, 2010)

    Google Scholar 

  • F. Schmidt-Bleek, MAIA: Einführung in die Material-Intensitäts-Analyse nach dem MIPS-Konzept. Wuppertal Texte (Birkhäuser, Berlin, 1998)

    Google Scholar 

  • F. Schmidt-Bleek, R. Klüting, Wieviel Umwelt braucht der Mensch?: MIPS – das Maß für ökologisches Wirtschaften (Birkhäuser, Berlin, 1994)

    Book  Google Scholar 

  • T. Seager, T. Theis, A uniform definition and quantitative basis for industrial ecology. J. Clean. Prod. 10(3), 225–236 (2002)

    Article  Google Scholar 

  • M. Stewart, B.P. Weidema, A consistent framework for assessing the impacts from resource use – a focus on resource functionality. Int. J. Life Cycle Assess. 10(4), 240–247 (2005)

    Article  Google Scholar 

  • J. Szargut, Exergy Method: Technical and Ecological Applications. Developments in Heat Transfer, vol. 18 (WIT, Southampton, 2005)

    Google Scholar 

  • J. Szargut, D.R. Morris, F.R. Steward, Exergy Analysis of Thermal, Chemical and Metallurgical Processes (Hemisphere Publishing, New York, 1988)

    Google Scholar 

  • G. Tsatsaronis, Design optimization using exergoeconomics, in Thermodynamic Optimization of Complex Energy Systems, ed. by A. Bejan, E. Mamut. Proceedings of the NATO Advanced Study Institute on Thermodynamics and the Optimization of Complex Energy Systems, Neptun, July 1998. 3, High Technology, vol. 69 (Kluwer, Dordrecht/Boston, 1999), pp. 101–115

    Google Scholar 

  • VDI Gesellschaft Energietechnik, Kumulierter Energieaufwand Begriffe, Definitionen, Berechnungsmethoden: Cumulative Energy Demand Terms, Definitions, Methods of Calculation. VDI-Richtlinien, 4600 (Beuth, Berlin, 1997)

    Google Scholar 

  • A. von Gleich, Outlines of a sustainable metals industry, in Sustainable Metals Management: Securing Our Future – Steps Towards a Closed Loop Economy, ed. by A. von Gleich, R.U. Ayres, S. Gößling-Reisemann. Eco-Efficiency in Industry and Science, vol. 19 (Springer, Dordrecht, 2006), pp. 3–39

    Google Scholar 

  • Wuppertal Institut, MIPS Online (2011), http://www.wupperinst.org/en/projects/topics_online/mips/index.html. Accessed 28 May 2011

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Gößling-Reisemann, S. (2013). Thermodynamics and Resource Consumption: Concepts, Methodologies, and the Case of Copper. In: Kauffman, J., Lee, KM. (eds) Handbook of Sustainable Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8939-8_54

Download citation

Publish with us

Policies and ethics