Estimating Soil Moisture Using Optical and Radar Satellite Remote Sensing Data

  • Stefano Natali
  • Loreto Pellegrini
  • Gianluigi Rossi
  • Ludovica Giordano
  • Massimo Iannetta
  • Gabriele Schino
  • Alberto Marini
  • Gasmi Nabil
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

The purpose of this work is to investigate the possible use of MODIS and ENVISAT-ASAR Data to extract soil moisture (SM) field and validate the developed systems by means of in situ measurements.

The main idea of this study concerns the advantages that could arise from a continuous and almost real time SM monitoring, permitted by wide-swath passive optical sensors that allow evaluating the dynamic evolution of different phenomena on a wide range of application fields: from hydrological monitoring and management to agricultural applications and so on. Observations provided by MODIS have no direct physical relation with soil water content. On the other hand, the relationship between Land Surface temperature (LST), NDVI and in situ measurements have shown many potentialities to indirectly retrieve SM information.

The use of SAR data for validation purposes is envisaged but not yet applied.

Calibration and validation phases are performed over a test site where in situ measurements are available.


Soil moisture Thermal Inertia optical radar sensor SoA-TI MODIS ASAR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarez-Mozos J., Casali, J., Gonzalez-Audicana M., Verhoest N. E. C. 2006. Assessment of the operational applicability of RADARSAT-1 data for surface soil moisture estimation, in IEEE Transactions on Geoscience and Remote Sensing, n.44 (4): 913–924CrossRefGoogle Scholar
  2. Baghdadi N., Zribi M. 2006. Evaluation of radar backscatter models IEM, OH and Dubois using experimental observations, in International Journal of Remote Sensing, n.27 (18): 20 September 2006, 3831–3852CrossRefGoogle Scholar
  3. Bignami C., Pierdicca N., Pulvirenti L., Ticconi F. Risultati preliminari di campagne sperimentali sulla sensibilità dei dati Envisat-ASAR all'umidità del terreno, XV Riunione Nazionale di Elettromagnetismo RINEM2004, Cagliari, atti_rinem/2004S14A05.pdf
  4. Boisvert J. B., Crevier Y., Pultz T. J. 1996. Regional estimation of soil moisture using remote sensing, in Canadian Journal of Soil Science, n.76 (3): 325–334Google Scholar
  5. Cai G., Wu J., Xue J., Hu Y., Guo J., Tang J. 2005. Soil Moisture Retrieval from MODIS data in Northern China Plain Using Thermal Inertia Model (SoA-TI), 0-7803-9050-4/05 2005 IEEEGoogle Scholar
  6. Cravey R. L., Jackson T. J., Hsu Ann Y. 1998. ERS-2 SAR Backscattering Coefficient and Soil Moisture for the Southern Great Plains 1997 Hydrology Experiment. Retrieval of Bio- and Geo-Physical Parameters from SAR Data for Land Applications Workshop, ESTEC, 21–23, October 1998Google Scholar
  7. Dubois P.C., Vanzyl J., Engman T. 1995. Measuring soil-moisture with imaging radars, in IEEE Transactions on Geoscience and Remote Sensing, n.33 (4): 915–926CrossRefGoogle Scholar
  8. Glenn, N. F., Carr J. R. 2004. Establishing a relationship between soil moisture and RADARSAT-1 SAR data obtained over the Great Basin, Nevada, USA, in Canadian Journal of Remote Sensing, n.30 (2): 176–181Google Scholar
  9. Liang Shunlin 2000. Narrowband to broadband conversion of land surface albedo I algorithms, in Remote Sensing of Environment 2000, n.76, 213–238CrossRefGoogle Scholar
  10. Ma A., Xue Y. 1990. A study of remote sensing: information model of soil moisture, in Proceedings of the 11th Asian Conference on Remote Sensing, n.1, 11.1–11.5Google Scholar
  11. MEEO SOIL MAPPER TM Report description document 2007. Issue 3.7, Date: 12/03/2007,
  12. Munro R. K., Lyons W. F., Shao Y., Wood M. S., Hood L. M., Leslie L. M. 1998. Modelling land surface—atmosphere interactions over the Australian continent with an emphasis on the role of soil moisture. Environmental Modelling and Software, n.13 (3–4): 333–339CrossRefGoogle Scholar
  13. Paloscia S., Pampaloni P., Pettinato S., Poggi P., Santi E. 2005. The retrieval of soil moisture from Envisat-ASAR data, in European Association of Remote Sensing Laboratories—EARSeL eProceedings, n.4 (1): 44–52, 04_1_paloscia1.html
  14. Portmann F. 2000. The Land-SAF Soil Moisture Product of MIUB and BfG. Paper presented at the CM-SAF (EUMETSAT Climate Monitoring Satellite Application Facility) Training Workshop, Dresden, Germany, 20–22 November 2000, pp. 6Google Scholar
  15. Tucker C. J. 1979. Red and photographic infrared linear combinations for monitoring vegetation, in Remote Sensing of Environment, n.8 (2): 127–150CrossRefGoogle Scholar
  16. Turner D. P., Ritts W. D., Cohen W. B., Maeirsperger T. K., Gower S., Kirschbaum A. A., Running S. W., Zhao M., Wofsy S. C., Dunn A. L., Law B. E., Campbell J. L., Oechel W. C., Kwon H. J., Meyers T. P., Small E. E., Kurc S. A., Gamon J. A. 2005. Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring, in Global Change Biology, n.11: 666–684CrossRefGoogle Scholar
  17. Verstraete M. M., Pinty B. 1996. Designing optimal spectral indexes for remote sensing applications, in IEEE Transactions on Geoscience and Remote Sensing, n.34 (5): 1254–1265CrossRefGoogle Scholar
  18. Wan Z. 1999. MODIS Land-Surface Temperature Algorithm Theoretical Basis Document (LST ATBD). Institute for Computational Earth System Science University of California, Santa Barbara, Version 3.3, April 1999Google Scholar
  19. Xue Y., Cracknell A. P. 1995. Advanced thermal inertia modelling, in International Journal of Remote Sensing, n.16 (3): 431–446CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  1. 1.MEEO S.n.c. San Giovanni di OstellatoFerraraItaly
  2. 2.ENEA CR CasacciaItaly
  3. 3.Università degli Studi di CagliariItaly

Personalised recommendations