Skip to main content

Induced Resistance in Melons by Elicitors for the Control of Postharvest Diseases

  • Chapter
  • First Online:
Postharvest Pathology

Part of the book series: Plant Pathology in the 21st Century ((ICPP,volume 2))

Abstract

Melons fruit can be induced to develop enhanced resistance to pathogen infection by pre- or postharvest treatment with a variety of chemical, physical and biological elicitors. The elicitors include acibenzolar, soluble silicon, oxalic acid, chitosan, β-aminobutyric acid, 2,6-dichloroisonicotinic acid, heat treatment and harpin. Resistance induced is broad spectrum and long lasting, but rarely provides complete control of infection. The mechanism of induced resistance is involved in the accumulation of defense enzymes, antifungal compounds, increasing of reactive oxygen species and lignification of epidermal cells. In order to maximize the efficacy of resistance elicitors, it is required to understand of the mechanism of induced resistance and the effect factors of pre- or postharvest. There also needs to evaluate quality change in induced fruit. It is concluded that control of melons postharvest disease by induced resistance would be the use of integrated approach combining chemical, physical and biological control methods, and culture practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aharoni Y, Copel A, Davidson H, Barkai-Golan R (1992) Fungicide application in water and in wax for decay control in ‘Galia’ melons. NZ J Crop Hort Sci 20:177-170

    CAS  Google Scholar 

  • Baker CJ, Orlandi EW, Mock NM (1993) Harpin, an elicitor of the hypersensitive response in tobacco caused by Erwinia amylovora, elicits active oxygen production in suspension cells. Plant Physiol 102:1341-1344

    CAS  PubMed  Google Scholar 

  • Barkai-Golan R (2001) Postharvest diseases of fruit and vegetables: development and control. Elsevier, Amsterdam, pp 27-32

    Google Scholar 

  • Barkai-Golan R, Podova R, Ross I, Lapidot M, Copel A, Davidson H (1994) Influence of hot water dip and γ-irradiation on postharvest fungal decay of Galia melons. Postharvest News Inform 5:1136

    Google Scholar 

  • Bautista-Banos S, DeLucca AJ, Wilson CL (2004) Evaluation of the antifungal activity of natural compounds to reduce postharvest blue mould of apples during storage. Mex J Phytopathol 22:362-369

    Google Scholar 

  • Bi Y, Tian SP, Liu HX, Zhao J, Cao JK, Li YC, Zhang WY (2003) Effect of temperature on chilling injury, decay and quality of Hami melon during storage. Postharvest Biol Technol 29:229-232

    Article  Google Scholar 

  • Bi Y, Tian SP, Ge J, Zhao YH (2005) Harpin induces local and systemic resistance against Trichothecium roseum in harvested Hami melons. Postharvst Biol Technol 38:183-187

    Article  Google Scholar 

  • Bi Y, Tian SP, Guo YR, Ge YH, Qin GZ (2006a) Sodium silicate reduces postharvest decay on Hami melons: Induced resistance and fungistatic effects. Plant Dis 90:279-283

    Article  CAS  Google Scholar 

  • Bi Y, Ge YH, Li YC, Wang JJ, Mao XY, Li XW (2006b) Postharvest acibenzolar-S-methyl treatment suppress decay and induces resistance in Hami melon. Acta Hortic 1:393-399

    Google Scholar 

  • Bi Y, Ge YH, Guo YR, Zhao J (2007a) Postharvest harpin treatment suppressed decay and induced the accumulation of defense-related enzymes in Hami melons. Acta Hortic 731:279-285

    Google Scholar 

  • Bi Y, Ge YH, Wang CL, Li XW (2007b) Melon production in China. Acta Hortic 731:493-500

    Google Scholar 

  • Bi Y, Li YC, Ge YH (2007c) Induced resistance in postharvest fruits and vegetables by chemicals and its mechanism. Stewart Postharvest Rev 6:11-18

    Google Scholar 

  • Bokshi AI, Morris SC, Deverall BJ (2003) Effects of benzothiadiazole and acetylsalicylic acid on β-1, 3-glucanase activity and disease resistance in potato. Plant Pathol 52:22-27

    Article  CAS  Google Scholar 

  • Bokshi AI, Morris SC, McConchie R, Deverall BJ (2006) Pre-harvest application of INA. BABA or BTH to control postharvest storage diseases of melons by inducing systemic acquired resistance. J Hort Sci Biotechnol 81:700-706

    CAS  Google Scholar 

  • Cao JK, Jiang WB (2006) Induction of resistance in Yali pear (Pyrus bretschneideri Rehd.) fruit against postharvest diseases by acibenzolar-S-methyl sprays on trees during fruit growth. Scientia Horticulturae 110:181-186

    Google Scholar 

  • Cheah LH, Page BBC, Sheperd R (1997) Chitosan coating for inhibition of Sclerotinia rot of carrots. NZ J Crop Hort Sci 25:89-92

    CAS  Google Scholar 

  • Cohen YR (2002) β-aminobutyric acid-induced resistance against plant pathogens. Plant Dis 86:448-457

    Article  CAS  Google Scholar 

  • Dann EK (2003) Induced resistance: potential for control of postharvest disease of horticultural crops. Proceedings of the Australasian Postharvest Horticulture Conference, Brisbane, Australia, October 1-3, pp 144-148

    Google Scholar 

  • Dann EK, Zainuri (2008) Preharvest treatments for induction of resistance to postharvest disease in fruits. J Plant Pathol 90 (2, Supplement):S2.27 (abstract)

    Google Scholar 

  • de Capdeville G, Beer SV, Watkins CB (2003) Pre- and postharvest harpin treatments of apples induce resistance to blue mold. Plant Dis 87:39-44

    Article  Google Scholar 

  • Deng JJ, Bi Y, Xie DF, Ge YH, Wang Y, Sun XJ, Li YH (2008) Effect of oxalic acid treatment on postharvest diseases and fruit quality of muskmelons. J Gansu Agri University 43:82-86 (in Chinese with English abstract)

    Google Scholar 

  • Dong H, Delaney TP, Bauer DW, Beer SV (1999) Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J 20:207-215

    Article  CAS  PubMed  Google Scholar 

  • Du J, Gemma H, Iwahori S (1997) Effects of chitosan coating on the storage of peach, Japanese pear and kiwifruit. J Jpn Soc Hort Sci 66:15-22

    Article  CAS  Google Scholar 

  • El Ghaouth A (1994) Manipulation of defense systems with elicitors to control postharvest diseases. In: Wilson CL, Wisniewski ME (eds) Biological control of postharvest diseases-theory and practice. CRC, Boca Raton, pp 153-167

    Google Scholar 

  • El Ghaouth A, Arul J, Wilson C, Benhamou N (1997) Biochemical and cytochemical aspects of the interactions of chitosan and Botrytis cinerea in bell pepper fruit. Postharvest Biol Technol 12:183-194

    Article  CAS  Google Scholar 

  • Exley C (1998) Silicon in life: a bioinorganic solution to bioorganic essentiality. J Biol Inorg Chem 69:139-144

    CAS  Google Scholar 

  • Fallik E, Aharoni Y, Copel A, Rodov V, Tuvia-Alkalai S, Horev B, Yekutieli O, Wiseblum A, Regev R (2000) Reduction of postharvest losses of Galia melon by a short hot-water rinse. Plant Pathol 49:333-338

    Article  Google Scholar 

  • Fauteux F, Remus-Borel W, Menzies JG, Belanger RR (2005) Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol Lett 249:1-6

    Article  CAS  PubMed  Google Scholar 

  • Friedrich L, Lawton K, Ruess W, Masner P (1996) A benzothiadiazole derivative induces systemic acquired resistance in tobacco. Plant J 10:61-70

    Article  CAS  Google Scholar 

  • Ge YH, Bi Y, Li M, Li X (2005a) Control of postharvest Fusarium rot and Trichothecium rot in harvested muskmelon (cv. Yindi) by Harpin. Agric Sci China 4:101-107

    Google Scholar 

  • Ge YH, Bi Y, Ma LY (2005b) Study on the periods and ways of latent infection of fungus on muskmelon (Cucumis melo L. cv. Huanghemi) fruit. Watermelon Melon China 3:1-3 (in Chinese with English abstract)

    Google Scholar 

  • Ge YH, Bi Y, Li X, Li Mei (2008) Induces resistance against Fusarium and pink rots by Acibenzolar-S-Methyl in harvested muskmelon (cv. Yindi). Agric Sci China 7:58-64

    Google Scholar 

  • Gorlach J, Volrath S, Knauf-Beiter G, Hengy G, Beckhove U, Kogel KH, Oostendorp M, Staub T, Ward E, Kessmann H, Ryals J (1996) Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates expression and disease resistance in wheat. Plant Cell 8:629-643

    Article  CAS  PubMed  Google Scholar 

  • Guo YR, Liu L, Zhao J, Bi Y (2007) Use of silicon oxide and sodium silicate for controlling Trichothecium roseum postharvest rot in Chinese cantaloupe (Cucumis melo L.). Int J Food Sci Technol 42:1012-1018

    Google Scholar 

  • Hammerschmidt R (1999) Induced disease resistance: how do induced plants stop pathogens? Physiol Mol Plant Pathol 55:77-84

    Article  CAS  Google Scholar 

  • Hammerschmidt R, Becker JS (1997) Acquired resistance to disease in plants. Hort Rev 18:247-289

    CAS  Google Scholar 

  • Huang Y, Deverall BJ, Tang WH, Wang W, Wu FW (2000) Foliar application of acibenzolar-S-methyl and protection of postharvest Rock melons and Hami melons from disease. Eur J Plant Pathol 106:651-656

    Article  CAS  Google Scholar 

  • Jakab G, Cottier V, Toquin V, Rigoli G, Zimmerli L, Metraux JP, Mauch-Mani B (2001) β-Aminobutyric acid-induced resistance in plants. Eur J Plant Pathol 107:29-37

    Article  CAS  Google Scholar 

  • Jiang YM, Li X, Bi Y, Zhou XP, Zhou W, Ge YH (2007) Inhibition of postharvest volatile compounds release by preharvest acibenzolar-S-methyl (BTH) treatment on muskmelons (cv. Yindi). Transactions of the CSAE 23:243-247 (in Chinese with English abstract)

    Google Scholar 

  • Kessmann H, Staub T, Hofmann C, Maetzke T, Herzog J, Ward E, Uknes S, Ryals J (1994) Induction of systemic acquired resistance in plants by chemicals. Annu Rev Phytopathol 32:439-459

    Article  CAS  PubMed  Google Scholar 

  • Klein JD, Lurie S (1991) Postharvest heat treatment and fruit quality. Postharvest News Inform 2:15-19

    Google Scholar 

  • Kuc J (2001) Concepts and directions of induced systemic resistance in plants and its application. Eur J Plant Pathol 107:7-12

    Article  Google Scholar 

  • Liu HX, Jiang WB, Bi Y, Luo YB (2005) Postharvest BTH treatment induces resistance of peach (Prunus persica L. cv. Jiubao) fruit to infection by Penicillium expansum and enhances activity of fruit defense mechanisms. Postharvest Biol Technol 35:263-269

    Google Scholar 

  • Liu J, Tian SP, Meng XH, Xu Y (2007) Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Biol Technol 44:300-306

    Article  CAS  Google Scholar 

  • Lucas JA (1999) Plant immunisation: from myth to SAR. Pest Sci 55:193-196

    Article  CAS  Google Scholar 

  • Lurie S (1998) Postharvest heat treatments of horticultural crops. Hort Rev 22:91-121

    Google Scholar 

  • Ma LY, Bi Y, Zhang ZK, Zhao L, An L, Ma KQ (2004) Control of pre- and postharvest main diseases on melon variety Yindi with preharvest azoxystrobin spraying. J Gansu Agric University 39:14-17 (in Chinese with English abstract)

    Google Scholar 

  • Mayberry KS, Hartz TK (1992) Extension of muskmelon storage life through the use of hot water treatment and polyethylene wraps. HortScience 27:324-326

    Google Scholar 

  • Meng XH, Li BQ, Liu J, Tian SP (2008) Physiologic responses and quality attributes of table grape fruit to chitosan preharvest spray and postharvest coating during storage. Food Chem 106:501-508

    Article  CAS  Google Scholar 

  • Morris S, Wade NL (1983) Control of postharvest diseases in cantaloupes by treatment with guazatine and benomyl. Plant Dis 67:792-792

    Article  CAS  Google Scholar 

  • Mucharroman E, Kuc J (1991) Oxalate and phosphate induce systemic induce resistance against disease caused by fungi, bacteria and viruses in cucumber. Crop Prot 10:261-265

    Google Scholar 

  • Mullin P, Wang JS, Qiu D, Wei ZM (1998) Disease control and growth enhancement effects of harpin on tobacco. (Abstract) Phytopathology 88:S65

    Google Scholar 

  • Paiva NL (2000) An introduction to the biosynthesis of chemical used in plant microbe communication. J Plant Growth Regul 19:131-143

    CAS  PubMed  Google Scholar 

  • Qin GZ, Tian SP (2005) Enhancement of biocontrol activity of Cryptococcus laurentii by silicon and the possible mechanisms involved. Phytopathology 95:69-75

    Article  PubMed  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809-1818

    Article  CAS  PubMed  Google Scholar 

  • Schirra M, D’hallewin G, Ben-Yehoshua S, Fallic E (2000) Host-pathogen interactions modulated by heat treatment. Postharvest Biol Technol 21:71-85

    Article  Google Scholar 

  • Snowdon AL (1990) A color atlas of postharvest diseases and disorders of fruits and vegetables. Vol.1. General Introduction and fruits. Wolfe Sci. Ltd, Spain. pp 12-52

    Google Scholar 

  • Spadaro D, Garibaldi A, Gullino ML (2004) Control of Penicillium expansum and Botrytis cinerea on apple combining a biocontrol agent with hot water dipping and acibenzolar-S-methyl, baking soda, or ethanol application. Postharvest Biol Technol 33:141-151

    Article  CAS  Google Scholar 

  • Spotts RA, Cervantes LA (1989) Evaluation of disinfestant-flotation salt-surfactant combinations on decay fungi of pear in a model dump tank. Phytopathology 79:121-126

    Article  CAS  Google Scholar 

  • Sykes S (1990) Melons: new varieties for new and existing markets. Agric Sci 3:32-35

    Google Scholar 

  • Tally A, Oostendorp M, Lawton K, Staub T, Bassi B (2000) Commercial development of elicitors of induced resistance to pathogens. In: Agrawal AA, Tuzun S, Bent E (eds) Induced plant defenses against pathogens and herbivores. APS, St. Paul, MN, pp 357-369

    Google Scholar 

  • Teitel DC, Aharoni Y, Barkai-Golan R (1989) The use of heat treatments to extend the shelf life of ‘Galia’ melons. J Hort Sci 64:367-372

    Google Scholar 

  • Terry LA, Joyce DC (2000) Suppression of grey mould on strawberry fruit with the chemical plant activator acibenzolar. Pest Manage Sci 56:989-992

    Article  CAS  Google Scholar 

  • Terry LA, Joyce DC (2004) Elicitors of induced disease resistance in postharvest horticultural crops: a brief review. Postharvest Biol Technol 32:1-13

    Article  Google Scholar 

  • Tian SP, Qin GZ, Xu Y (2005) Synergistic effects of combining biocontrol agents with silicon against postharvest diseases of jujube fruit. J Food Prot 68(3):544-550

    CAS  PubMed  Google Scholar 

  • Uknes S, Mauch mani B, Moyer M, Potter S, Williams S, Dincher S, Chandler D, Slusarenko A, Ward E, Ryals J (1992) Acquired resistance in Arabidopsis. Plant Cell 4:645-656

    Google Scholar 

  • Walters D, Walsh D, Newton A, Lyon G (2005) Induced resistance for plant disease control: maximizing the efficacy of resistance elicitors. Phytopathology 95:1368-1373

    Article  CAS  PubMed  Google Scholar 

  • Wang JJ, Wang Y, Ge YH, Bi Y (2006) Inhibiting effect of postharvest Harpin treatment on Alternaria rot and induction to resistance enzymes of Pyrus bretschneideri Pingguoli. J Gansu Agric Univ 41:114-117 (in Chinese with English abstract)

    Google Scholar 

  • Wang Y, Li X, Bi Y, Ge YH, Li YC, Xie F (2008) Postharvest ASM or Harpin treatment induce resistance of muskmelons against Trichothecium roseum. Agric Sci China 7:217-223

    CAS  Google Scholar 

  • Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ah1-Goy P, Metraux JP, Ryals JA (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3:1085-1094

    Google Scholar 

  • Wei ZM, Laby RJ, Zumoff CH, Bauer DW, He SY, Collmer A, Beer SV (1992) Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257:85-88

    Article  CAS  PubMed  Google Scholar 

  • Whangchai K, Saengnil K, Uthaibutra J (2006) Effect of ozone in combination with some organic acids on the control of postharvest decay and pericarp browning of longan fruit. Crop Prot 25:821-825

    Article  CAS  Google Scholar 

  • Willingham SL, Pegg KG, Langdon PWB, Cooke AW, Beasley D, Mclennan R (2002) Combination of strobilurin fungicides and acibenzolar (Bion) to reduce scab on passionfruit caused by Cladosporium oxysporum. Australas Plant Pathol 31:333-336

    Article  Google Scholar 

  • Wilson CL, El-Ghaouth A, Chalutz E, Droby S, Stevens C, Lu JY, Khan V, Arul J (1994) Potentatial of induced resistance to control postharvest diseases of fruits and vegetables. Plant Dis 78:837-844

    Article  Google Scholar 

  • Xie DF, Bi Y, Deng JJ, He SK, Lv SF (2008) Control of latent infection and post harvest main diseases with preharvest chitosan sprays in muskmelons. J Gansu Agric Univ 43:96-99 (in Chinese with English abstract)

    Google Scholar 

  • Zhang D, Quantick PC (1998) Antifungal effects of chitosan coating on fresh strawberries and raspberries during storage. J Hort Sci Biotechnol 73:763-767

    CAS  Google Scholar 

  • Zhang YM, An L, Bi Y, Liu JQ, Ma KQ (2005) Effect of heat treatment on the disease of Postharvest Muskmelon. J Gansu Agric Sci Technol 4:46-49 (in Chinese with English abstract)

    Google Scholar 

  • Zhang ZK, Bi Y, Wang JJ, Wang Y, Zhang HY, Li WH (2006) Defense enzymes and disease resistance substances induction in muskmelons by preharvest BTH spraying. J Gansu Agric Univ 41:122-125 (in Chinese with English abstract)

    Google Scholar 

  • Zheng X, Tian SP, Michael JG, Yue H, Li BQ (2007) Effects of exogenous oxalic acid on ripening and decay incidence in mango fruit during storage at room temperature. Postharvest Biol Technol 45:281-284

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Dov Prusky (Department of Postharvest Science, ARO, Volcani Center, Israel) for offering the opportunity to write this chapter. This work was financially supported by National Natural Science Foundation of China (30671465), Ministry of Science and Technology of China (2001BA501A09) and Australia Center of International Agricultural Research (ACIAR, PHT/1998/140).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bi Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Yang, B., Yongcai, L., Yonghong, G., Yi, W. (2009). Induced Resistance in Melons by Elicitors for the Control of Postharvest Diseases. In: Prusky, D., Gullino, M. (eds) Postharvest Pathology. Plant Pathology in the 21st Century, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8930-5_3

Download citation

Publish with us

Policies and ethics