Advertisement

Tarski’s Practice and Philosophy: Between Formalism and Pragmatism

  • Hourya Benis Sinaceur
Part of the Synthese Library book series (SYLI, volume 341)

Keywords

English Translation Axiom System Mathematical Practice Proof Theory Fairy Tale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benacerraf P. and Putnam H. 1983, Philosophy of Mathematics. Selected Essays, Prentice Hall, Inc. Englewood Cliffs, New Jersey (first ed. 1964).Google Scholar
  2. 2.
    Benis Sinaceur Hourya. 1991, Corps et Modèles, Essai sur l’histoire de l’algèbre réelle, Paris, Vrin (second ed. 1999).Google Scholar
  3. 3.
    Benis Sinaceur Hourya. 1993, Du formalisme à la constructivité: le finitisme, Revue Internationale de Philosophie 47, n 186, 4/1993: 251–284.Google Scholar
  4. 4.
    Benis Sinaceur Hourya. 2001, Alfred Tarski: Semantic Shift, Heuristic Shift in Metamathematics, Synthese 126: 49–65.CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bernays P. 1922, Über Hilberts Gedanken zur Grundlegung der Arithmetik, Jahresbericht der Deutschen Mathematiker-Vereinigung 31: 10–19. English translation in Mancosu 1998,215–222.zbMATHGoogle Scholar
  6. 6.
    Bernays P. 1930, Die Philosophie der Mathematik und die Hilbertsche Beweistheorie, Blötter für Deutsche Philosophie 4: 326–367. Reprinted in P. Bernays 1976, 17–61. English translation in Mancosu 1998, 234–265.Google Scholar
  7. 7.
    Bernays P. 1935, Sur le platonisme en mathématique, L’enseignement mathématique, XXIV, os 1–2: 52–69. Reprinted in P. Bernays, Philosophie des mathématiques, Paris, Vrin, 2003, 83–104. English translation in Benacerraf P. and Putnam H. [1], 274–286.Google Scholar
  8. 8.
    Bernays P. 1976, Abhandlungen zur Philosophie der Mathematik, Darmstast, Wissenchaftliche Buchgesellschaft. French translation, Paris, Vrin, 2003.Google Scholar
  9. 9.
    Brouwer L.E.J. 1912, Intuitionism and Formalism, Bulletin of the American Math. Society 20: 81–96. Reprinted in Brouwer 1975, 123–137.CrossRefMathSciNetGoogle Scholar
  10. 10.
    Brouwer L.E.J. 1928, Intuitionistische Betrachtungen über den Formalismus, Koninklijke Akademie van wetenschappen te Amsterdam, Proceedings of the Section of Sciences 31: 374–379. Reprinted in Brouwer 1975, 409–414. English translation of § 1 in van Heijenoort 1967, 490–492.Google Scholar
  11. 11.
    Brouwer L.E.J. 1929, Mathematik, Wissenschaft, und Sprache, Monatshefte für Mathematik 36, 153–164. Reprinted in Brouwer 1975, 417–428. English translation in Mancosu 1998, 45–53.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Brouwer L.E.J. 1948, Consciousness, Philosophy, and Mathematics, Proceedings of the Tenth International Congress of Philosophy, Amsterdam, 1948. Reprinted in Brouwer1975, 480–494.Google Scholar
  13. 13.
    Brouwer L.E.J. 1952, Historical Background, Principles and Methods of Intuitionism, South Africa Journal of Science, Cape Town, July 1952. Reprinted in Brouwer 1975, 508–515.Google Scholar
  14. 14.
    Brouwer L.E.J. 1975, Collected Works I, A. Heytind (ed.), North-Holland.Google Scholar
  15. 15.
    Cantor G. 1966, Abhandlungen mathematischen und philosophischen Inhalts, Hildesheim, Georg Olms Verlagsbuchhandlung, 1966.Google Scholar
  16. 16.
    Dedekind R. 1888, Was sind und was sollen die Zahlen?, Braunschweig, Vieweg.Google Scholar
  17. 17.
    Dedekind R. 1890, Letter to Keferstein, 27 February 1890, English translation in Jean van Heijenoort (ed.), 1967, 98–103.Google Scholar
  18. 18.
    Dauben J.W. 1995, Abraham Robinson, Princeton, Princeton University Press.zbMATHGoogle Scholar
  19. 19.
    Duren P. 1989, A Century of Mathematics in America, Part III, American Mathematical Society, Providence R.I., 393–403.Google Scholar
  20. 20.
    Feferman S. 1999a, Logic, Logics, and Logicism, Notre Dame Journal of Formal Logic 40: 31–54.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Feferman S. 1999b, Tarski and Gödel: Between the Lines, in Tarski J. and Köhler E. (eds.), Alfred Tarski and the Vienna Circle. Austro-Polish Connections in Logical Empirism, Dordrecht/Boston/London, Kluwer Academic Publishers, 53–64.Google Scholar
  22. 22.
    Feferman S. 2003, Tarski’s Conceptual Analysis of Semantical Notions, in A. Benmakhlouf (ed.), Sémantique et épistémologie, Casablanca, Editions Le Fennec, 2003, 79–108.Google Scholar
  23. 23.
    Feferman S. 2004, Tarski’s conception of logic, Annals of Pure and Applied Logic 126: 5–13.zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Feferman A. and Feferman S. 2004, Alfred Tarski: Life and Logic, Cambridge, Cambridge University Press.zbMATHGoogle Scholar
  25. 25.
    Givant S. 1999, Unifying Threads in Alfred Tarski’s Work, The Mathematical Intelligencer 21(1), 47–58.zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Heyting A. 1930, Die formalen Regeln der intuitionistische Logik, Sitzungsberichte der Preussischen Akademie der Wissenschaften, Phys.-Math. Kl. 42–56. English translation in Mancosu 1998, 311–327.Google Scholar
  27. 27.
    Hilbert D. 1899, Grundlagen der Geometrie, Zehnte Auflage, Stuttgart, B. G. Teubner, 1968.Google Scholar
  28. 28.
    Hilbert D. 1905, Über die Grundlagen der Logik und der Arithmetik, Verhandlungen des dritten Mathematiker-Kongresses (Heidelberg, August 1904), Leipzig, B.G. Teubner.Google Scholar
  29. 29.
    Hilbert D. 1918, Axiomatisches Denken, Mathematische Annalen 78: 405–415; in Hilbert 1935, 146–156.CrossRefMathSciNetGoogle Scholar
  30. 30.
    Hilbert D. 1922, Neubegründung der Mathematik. Erste Mitteilung, Abhandlungen aus dem Mathematischen Seminar der Hamburgischen Universitöt 1, 155–177; in Hilbert 1935,155–177. English translation in Mancosu 1998, 198–214.Google Scholar
  31. 31.
    Hilbert D. 1923, Die logischen Grundlagen der Mathematik, Mathematische Annalen 88:151–165; in Hilbert 1935, 178–191.CrossRefMathSciNetGoogle Scholar
  32. 32.
    Hilbert D. 1926, Über das Unendliche, Mathematische Annalen 95: 161–190. English translation in van Heijenoort 1967, 367–392.CrossRefMathSciNetGoogle Scholar
  33. 33.
    Hilbert D. 1928, Die Grundlagen der Mathematik, Abhandlungen aus dem Mathematischen Seminar der Hamburgischen Universitöt 6: 65–83. English translation in van Heijenoort 1967, 464–479.zbMATHCrossRefGoogle Scholar
  34. 34.
    Hilbert D. 1930, Naturerkennen and Logik, Naturwissenschaften 18: 959–963; in Hilbert 1935, 378–387.CrossRefGoogle Scholar
  35. 35.
    Hilbert D. 1931, Die Grundlegung der elementaren Zahlenlehre, Mathematische Annalen 104: 485–494.CrossRefMathSciNetGoogle Scholar
  36. 36.
    Hilbert D. 1935, Gesammelte Abhandlungen III, Berlin, Springer. Reprint New York, Chelsea, 1965.Google Scholar
  37. 37.
    Hilbert D. and Bernays P. 1934, Grundlagen der Mathematik I, Berlin, Springer-Verlag.Google Scholar
  38. 38.
    Herbrand J. 1968, Écrits Logiques, van Heijenoort (ed.), Paris, Presses Universitaires de France.Google Scholar
  39. 39.
    Hintikka J. 2004, On Tarski’s Assumptions, Synthese 142: 353–369.zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Kreisel G. 1958, Mathematical Significance of Consistency Proofs, The Journal of Symbolic Logic 23: 155–182.CrossRefMathSciNetGoogle Scholar
  41. 41.
    Kreisel G. 1968, A Survey of Proof Theory, The Journal of Symbolic Logic 33: 321–388.zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Kreisel G. 1983, Hilbert’s Programme, Dialectica 12 (1958): 346–372. English expanded version in Benacerraf P. and Putnam H. [1], 207–238.MathSciNetGoogle Scholar
  43. 43.
    Kreisel G. 1985, Mathematical Logic: Tool and Object lesson for Science, Synthese 62:139–151.CrossRefMathSciNetGoogle Scholar
  44. 44.
    Mancosu P. 1998, From Brouwer to Hilbert. The Debate on the Foundations of Mathematics in the 1920s, New York, Oxford University Press.zbMATHGoogle Scholar
  45. 45.
    Mancosu P. 1999, Between Russell and Hilbert: Behmann on the Foundations of Mathematics, The Bulletin of Symbolic Logic 5(3): 303–330.zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Mancosu P. 2005, Harvard 1940–1941: Tarski, Carnap and Quine on a finitistic language of mathematics for science, History and Philosophy of Logic 26 (November 2005): 327–357.zbMATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Mancosu P. 2006, Tarski on Models and Logical Consequence, in Ferreirós J. and Gray J.J. (eds.), The Architecture of Modern Mathematics, Chapter 7, Oxford University Press, 2006.Google Scholar
  48. 48.
    Mycielski J. 2004, On the Tension Between Tarski’s Nominalism and His Model Theory (Definitions for a Mathematical Model of knowledge), Annals of Pure and Applied Logic 126: 215–224.zbMATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Poincaré H. 1905, Les mathématiques et la logique, Revue de Métaphysique et de Morale 13: 815–835 and 14: 17–34.Google Scholar
  50. 50.
    Reid C. 1970, Hilbert, New York-Heidelberg-Berlin, Springer-Verlag.zbMATHGoogle Scholar
  51. 51.
    Robinson A. 1965, Formalism 64, Proceedings of the International Congress for Logic, Methodology and Philosophy of Science, Jerusalemn (1964), Amsterdam, North Holland, 228–246; in H.J. Keisler, S. Körner, W.A.J. Luxemburg and A.D. Young (eds.), Selected Papers, New Haven/London, Yale University Press, 1979, 505–523.Google Scholar
  52. 52.
    Robinson A. 1969, From a formalist’s point of view, Dialectica 23: 45–49.zbMATHCrossRefGoogle Scholar
  53. 53.
    Rodriguez-Consuegra F. 2005, Tarski’s Intuitive Notion of Set, in Sica G. (ed.), Essays on the Foundations of Mathematics and Logic, Monza (Italy), Polimetrica International Scientific Publisher, Advanced Studies in Mathematics and Logic, 1: 227–266.Google Scholar
  54. 54.
    Sieg W. 1999, Hilbet’s Programs: 1917–1922, The Bulletin of Symbolic Logic 5(3): 1–44.zbMATHMathSciNetGoogle Scholar
  55. 55.
    Skolem T. 1923, Begründung der elementaren Arithmetik durch die rekurrierende Denkweise ohne Anwendung scheinbaren Verönderlichen mit unendlichem Ausdehnungs-bereich. English translation in van Heijenoort 1967, 302–333.Google Scholar
  56. 56.
    Suppes P. 1988, Philosophical Implications of Tarski’s Work, The Journal of Symbolic Logic 53(1): 80–91.zbMATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    Tait W. 1981, Finitism, The Journal of Philosophy 78(9): 487–546.CrossRefGoogle Scholar
  58. 58.
    Tarski A. 1930a, Über einige fundamentale Begriffe der Metamathematik, Compte Rendus de la Société des Sciences et des Lettres de Varsovie XXIII, Cl. 3: 22–29. Reprinted in Tarski 1986a, I, 311–320. English translation in Tarski 1983, 30–37.Google Scholar
  59. 59.
    Tarski A. 1930b, Fundamentale Begriffe der Methodologie der deduktiven Wissenschaften I, Monatshefte für Mathematik und Physik, 37: 361–404. Reprinted in Tarski 1986a, I, 341–390. English translation in Tarski 1983, 60–109.zbMATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    Tarski A. 1931, Sur les ensembles définissables de nombres réels I, Fundamenta Mathematicae 17: 210–239. Reprinted in Tarski 1986a, I, 517–548. English translation in Tarski 1983, 110–142.zbMATHGoogle Scholar
  61. 61.
    Tarski A. 1935–36, Grundzüge des Systemenkalküls I, II, Fundamenta Mathematicae 25: 503–526 and 26: 283–301, in Tarski 1986a, II, 25–50 and 223–244. English translation in Tarski 1983, 342–383.Google Scholar
  62. 62.
    Tarski A. 1936a, Der Wahrheitsbegriff in den formalisierten Sprachen, Studia Philosophica I: 261–405 (first publication in Polish in 1933). English translation in Tarski 1983, 152–278.Google Scholar
  63. 63.
    Tarski A. 1936b, Grundlegung der wisenschaftlichen Semantik, Actes du Congrès International de Philosophie Scientifique, Paris, Hermann, 1936, 1–8, in Tarski 1986a, II,259–268. English Translation: The Establishment of Scientific Semantics, Philosophical and Phenomenological Research 4 (1944): 341–376, in Tarski 1983, 401–408.Google Scholar
  64. 64.
    Tarski A. 1939/67, The Completeness of Elementary Algebra and Geometry, Paris, Institut Blaise Pascal; in Tarski 1986a, IV, 289–346.Google Scholar
  65. 65.
    Tarski A. 1948/51, A Decision Method for Elementary Algebra and Geometry (prepared for publication by J.C. McKinsey), University of California Press, Berkeley and Los Angeles. In Tarski 1986a, III, 297–368.Google Scholar
  66. 66.
    Tarski A. 1944, The Semantic Conception of Truth and the Foundations of Semantics, in Tarski 1986a, II, 661–699.Google Scholar
  67. 67.
    Tarski A. 1952, Some Notions and Methods on the Borderline of Algebra and Metamathemtics, Proceedings of the International Congress of Mathematicians (Cambridge, Mass. 1950), Providence, American Mathematical Society, 705–720. Tarski 1986a, III, 459–476.Google Scholar
  68. 68.
    Tarski A. 1965, Introduction to logic and to the Methodology of the Deductive Sciences, New York, Oxford University Press (first edition, 1941).zbMATHGoogle Scholar
  69. 69.
    Tarski A. 1983, Logic, Semantics, Metamathematics, Papers from 1923 to 1938 translated by J.H. Woodger, Oxforfd, Clarendon Press (first ed. 1956).Google Scholar
  70. 70.
    Tarski A. 1986a, Collected Papers I, II, III, IV, Givant S.R. and McKenzie R.N. (eds.), Birkhöuser.Google Scholar
  71. 71.
    Tarski A. 1986b, What are Logical Notions, Posthumous Paper edited by Corcoran J., History and Philosophy of Logic 7: 143–154.zbMATHCrossRefMathSciNetGoogle Scholar
  72. 72.
    Tarski A. 1987, A Philosophical Letter of Alfred Tarski, with a prefatory note by Morton White (1944), Journal of Philosophy 84: 1987, 28–32.MathSciNetGoogle Scholar
  73. 73.
    Tarski A. 1995, Some Current Problems in Metamathematics, Posthumous Paper edited by Tarki J. and Wolenski J., History and Philosophy of Logic 16: 159–168.Google Scholar
  74. 74.
    Tarski A. 2000, Address at the Princeton University Bicentennial Conference on Problems of Mathematics (December 17–19, 1946), Posthumous Paper edited by H. Benis Sinaceur, The Bulletin of Symbolic Logic 6(1): 1–44.Google Scholar
  75. 75.
    Tarski A. and Givant S. 1987, Formalization of Set Theory without Variables, American Mathematical Society, Providence, R.I.zbMATHGoogle Scholar
  76. 76.
    Van Heijenoort J. 1967, From Frege to Gödel. A Source Book in Mathematical Logic, 1879–1931, Cambridge (Mass.), Harvard University Press.Google Scholar
  77. 77.
    Webb J.C. 1980, Mechanism, Mentalism, and Metamathematics, Dordrecht-Boston-London, D. Reidel Publishing Company.zbMATHGoogle Scholar
  78. 78.
    Webb J.C. 1995, Tracking Contradictions in Geometry: The Idea of a Model from Kant to Hilbert, in J. Hintikka (ed.), From Dedekind to Gödel. Essays on the Development of the Foundations of Mathematics, Synthese Library, vol. 251, Dordrecht/Boston/London, Kluwer Academic Publishers, 1–20.Google Scholar
  79. 79.
    Weyl H. 1921, Über die neue Grundlagenkrise der Mathematik, Mathematische Zeitschrift 10: 39–79. English translation in Mancosu 1998, 86–118.CrossRefMathSciNetGoogle Scholar
  80. 80.
    Weyl H. 1925–27, Die heutige Erkenntnislage in der Mathematik. English translation in Mancosu 1998, 123–142.Google Scholar
  81. 81.
    Weyl H. 1928, Diskussionsbemerkungen zu dem zweitem Hilbertschen Vortrag über die Grundlagen der Mathematik, Abhandlungen aus dem Mathematischen Seminar der Hamburgischen Universitöt 6: 86–88. English translation in van Heijenoort 1967, 480–484.zbMATHCrossRefGoogle Scholar
  82. 82.
    Wolenski J. 1989, Logic and Philosophy in the Lvov-Warsaw School, Synthese Library, vol. 198, Dordrecht/Boston/London, Kluwer Academic Publishers.Google Scholar
  83. 83.
    Wolenski J. 1995, On Tarski’s Background, in J. Hintikka (ed.), From Dedekind to Gödel. Essays on the Development of the Foundations of Mathematics, Synthese Library, vol. 251, Dordrecht/Boston/London, Kluwer Academic Publishers, 331–342.Google Scholar
  84. 84.
    Wolenski J. 1999, Semantic Revolution. Rudolf Carnap, Kurt Gödel, Alfred Tarski, in Tarski J. and Köhler E. (eds.), Alfred Tarski and the Vienna Circle. Austro-Polish Connections in Logical Empirism, Dordrecht/Boston/London, Kluwer Academic Publishers, 1–15.Google Scholar
  85. 85.
    Wolenski J. 2003, Logic, Semantics and Realism, in A. Benmakhlouf (ed.), Sémantique et épistémologie, Casablanca, Editions Le Fennec, 2003, 135–148.Google Scholar
  86. 86.
    Zach R. 2003, The Practice of Finitism: Epsilon Calculus and Consistency Proofs in Hilbert’s Program, Synthese 137: 211–259.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Hourya Benis Sinaceur
    • 1
  1. 1.IHPST (Institut d’Histoire et Philosophie des Sciences et des Techniques)CNRS-UniversitéParis

Personalised recommendations