Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)


FeTi can store 3.7 wt% hydrogen if it is synthesized in the form of FeTiH4. In the present study, candidate alloying elements were investigated that would decrease the formation energy of this hydride, using first principles calculations within the generalized gradient approximation (GGA) to density functional theory (DFT). Selected alloying elements are Co, Mg, Mo, Ni, Nb, V and Zr, and they were substituted for Fe or Ti atoms separately. Their effects on the formation energy of FeTiH4 were analyzed on the basis of electronic structure. It was found that Zr, Nb, Mo and Mg substitution for Fe decreases the formation energy of the hydride considerably. Stabilization is achieved by forming stronger bonds between hydrogen atoms and rest of the Fe atoms in the structure which is facilitated by the antibonding between the hydrogen atoms and the substituted high tendency hydride forming element


hydrogen storage metal hydrides FeTi first principles calculations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    1. Ivey D.G., Northwood D.O., J. Mater.Sci., 1983; 18:321CrossRefADSGoogle Scholar
  2. 2.
    2. Thompson P., Reilly J.J., Hastings J.M., J. Appl. Crystallogr., 1989; 22:256CrossRefGoogle Scholar
  3. 3.
    3. Reilly J.J., Wiswall Jr. R.H., Inorg. Chem., 1974; 13(1):218CrossRefGoogle Scholar
  4. 4.
    4. Nagasako N., Fukumoto A., Miwa K., Phys. Rev. B, 2002; 66:155106CrossRefADSGoogle Scholar
  5. 5.
    5. Miwa K., Fukumoto A., Phys. Rev. B, 2002; 65:155114CrossRefADSGoogle Scholar
  6. 6.
    6. Smithson H., Marianetti C.A., Van der Ven A., Predith A., Ceder G., Phys. Rev. B, 2002; 66:144107CrossRefADSGoogle Scholar
  7. 7.
    7. Kinaci A., Aydinol M.K., Int. J. Hydrogen Energ., 2007; 32:2466CrossRefGoogle Scholar
  8. 8.
    8. Kresse G., Hafner J., Phys. Rev. B., 1993; 47:558 ibid. 1994; 49:14251CrossRefADSGoogle Scholar
  9. 9.
    9. Kresse G ., Furthmuller J., Comput. Mat. Sci., 1996; 6:15CrossRefGoogle Scholar
  10. 10.
    10. Kresse G., Furthmuller J., Phys. Rev. B, 1996; 54(11):169Google Scholar
  11. 11.
    11. Kresse G., Joubert D., Phys. Rev. B, 1999; 59:1758CrossRefADSGoogle Scholar
  12. 12.
    12. Thompson P., Pick M.A., Reidinger F., Corliss L.M., Hastings J.M., Reilly J.J., J. Phys. F, 1978; 8(4):L75–L80CrossRefADSGoogle Scholar
  13. 13.; Hydride information center, last checked May 2007
  14. 14.
    14. Nambu T., Ezaki H., Yukawa H., Morinaga M., J. Alloy. Compd.1999; 293–295:213CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials Engineering Middle East Technical UniversityAnkaraTurkey

Personalised recommendations