Thermodynamics Of Thermolysis Of Alkali Metals Borohydrides

  • S. Yu. Zaginaichenko
  • D. V. Schur
  • T. A. Trifonova
  • Z. A. Matysina
Conference paper
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Abstract

Theoretical investigation of phase transformation of borohydrides of alkali metals has been performed on the basis of molecular-kinetic theory in the approach of the pair interaction of nearest atoms. The elaborated statistical theory of phase transformations at the realization of chemical reactions between phases of borohydrides of alkali metals gives the explanation and justification for the course of these reactions and provides the investigation of phase diagram with full details for the components of studied reactions. The knowledge of phase parameters for each concrete reaction from independent experiments predetermines the conditions of such reactions performance and the conditions of extraction of hydrogen as power source. The comparison of theoretical results with the experimental data for phase transformations of borohydrides of alkali metals shows the good agreement.

Keywords

borohydride hydrogen concentration statistical theory temperature phase transformation phase diagram 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amendola S.C., Sharp-Goldman S.L., Januja M.S., Spencer N.C., Kelly M.T., Petillo P.J., Binder M. Hydrogen storage by NaBH4//Int. J. Hydrogen Energy, 2004,29: 263CrossRefGoogle Scholar
  2. 2.
    Lodziana Z., Vegge T. Structural stability of complex hydrides: LiBH4revisited //Phys. Rev. Lett., 2004,93(14): 145501PubMedCrossRefADSGoogle Scholar
  3. 3.
    Vajo J.J., Skeith S.L., Mertens F. Reversible storage of hydrogen in destabilized LiBH4//J. Phys. Chem. B Condens. Matter. Mater. Surf. Interface. Biophys., 2005,109(9): 3719–3722Google Scholar
  4. 4.
    Chandhuri S., Muckerman J.T. A critical first step for reversible hydrogen storage in NaAlH4//J. Phys. Chem. B Condens. Matter. Mater. Surf. Interface. Biophys., 2005,109(15): 6952–6957Google Scholar
  5. 5.
    Meisner G.P., Scullin M.L., Balogh M.P., Pinkerton F.E., Meyer M.S. Hydrogen release from mixtures of lithium borohydride and lithium amide: a phase diagram study //J. Phys. Chem. B Condens. Matter. Mater. Surf. Interface. Biophys., 2006,110(9): 4186–4192Google Scholar
  6. 6.
    Au.M. Jurgensen A., Zeigler K. Modified lithium borohydrides for reversible hydrogen storage //J. Phys. Chem. B Condens. Matter. Mater. Surf. Interface. Biophys.,110(13): 7062–7067Google Scholar
  7. 7.
    Au.M. Jurgensen A., Zeigler K. Modified lithium borohydrides for reversible hydrogen storage //J. Phys. Chem. B Condens. Matter. Mater. Surf. Interface. Biophys., 2006,110(51): 26482–26487Google Scholar
  8. 8.
    Talyzin A.V., Anderson O., Sundqvist B., Kurnosov A., Dubrovinsky L. High-pressure phase transition in LiBH4//J. Solid State Chem., 2007,180(2): 510–517CrossRefADSGoogle Scholar
  9. 9.
    Laversenne L., Bonnetot B. Hydrogen storage using borohydrides //Ann. Chim. Sci. Mat., 2005,30(5): 495–503CrossRefGoogle Scholar
  10. 10.
    10.Luo W., Ronnebro E. Towards a viable hydrogen storage system for transportation application// J. Alloy. Compd., 2005,404–406: 392–395CrossRefGoogle Scholar
  11. 11.
    Ranjard J.F., Glipa X. Procédé pour maintenir liquide a la température ambiante une solition aqueuse de borate de sodium. — French Pat. 2 859648-A1. (2003/9/03)Google Scholar
  12. 12.
    12.Liu J., Fang Z.Z., Sohn H.Y. A new Li-Al-N-H system for reversible hydrogen storage //J. Phys. Chem. B Condens. Matter. Mater. Surf. Interface. Biophys., 2006,110(29): 14236–14239Google Scholar
  13. 13.
    Gilbert M., Brown P.J., Joachim H., Schaeibel J.H. Complex hydrides for hydrogen storage studies of the Al(BH4) system. — Project ID # STP24. — Metal hydride Center of Excellence. — 2007Google Scholar
  14. 14.
    14.Soloveichik G.l. Metal borohydrides as hydrogen storage materials //Material Matters., 2007,2(2): 11–15ADSGoogle Scholar
  15. 15.
    15.Balema V.P. Mechanical processing in hydrogen storage research and development //Material Matters., 2007,2(2): 16–18ADSGoogle Scholar
  16. 16.
    Goldshmidt H.J. Splavy vnedreniya. —Moscow: air, 1971. — V. 1 and 2. — 424 and 464 pGoogle Scholar
  17. 17.
    Alefeld G., Felkl H. Vodorod v metallakh. — Moscow: air, 1981. — V. 1 and 2. — 480 and 432 pGoogle Scholar
  18. 18.
    18.Stock A., Sfitterlin W., Kurzen F. Boron hydrides. XX. Potassium diborane K2(B2H6) //Z. Anorg. Allgem. Chem., 1935,225: 225–242CrossRefGoogle Scholar
  19. 19.
    19.Schlesinger H.I., Sanderson R.T., Burg A.B. Metallo borohydrides I. Aluminium borohydride //J. Am. Chem. Soc., 1940,62: 3421–3425CrossRefGoogle Scholar
  20. 20.
    20.Burg A.B., Schlesinger H.I. Metallo borohydrides II. Beryllium borohydride //J. Am. Chem. Soc.,1940,62: 3425–3429CrossRefGoogle Scholar
  21. 21.
    21.Schlesinger H.I., Brown H.C. Metallo borohydrides III. Lithium borohydride //J. Am. Chem. Soc., 1940,62: 3429–3435CrossRefGoogle Scholar
  22. 22.
    22.Schlesinger H.I., Herbert C., Brown H.C., Abraham B., Bond A.C., Davidson N., Finholt A.E., Gilbreath J.R., et. al. New developments in the chemistry of diborane and the borohydrides //J. Am. Chem. Soc., 1953,75(1): 186–190CrossRefGoogle Scholar
  23. 23.
    23.James B.D., Wallbridge M.G.H. Metal tetrahydroborates //Prog. Inorg. Chem., 1970,11: 97–258Google Scholar
  24. 24.
    24.Greenwood N.N. The chemistry of boron //Comprehensive Inorg. Chem., 1973,8: 745–762Google Scholar
  25. 25.
    Maybury P.C., Mitchell R.W., Hawthorne M.F. Hydrogen adducts of cobalt and nickel boride //J. Chem. Soc., Chem. Commun., 1974, 534–535Google Scholar
  26. 26.
    26.Smitls K. Metally. Spravochnik. —Moscow: Metallurgiya, 1980. — 448 pGoogle Scholar
  27. 27.
    27.Smirnov A.A. Molekulyarno-kineticheskaya teoriya metallov.— Moscow: Nauka, 1966. — 488 pGoogle Scholar
  28. 28.
    28.Matysina Z.A. Atomniy poryadok i svoystva splavov. — Dnepropetrovsk: DGU, 1981. — 112 pGoogle Scholar
  29. 29.
    29.Matysina Z.A., Milyan M.I. Teoriya rastvorimosti primesey v uporyadochennyh fazah. — Dnepropetrovsk: DGU, 1991. — 180 pGoogle Scholar
  30. 30.
    30.Matysina Z.A., Schur D.V. Vodorod i tverdofaznie prevrascheniya v metallakh, splavakh, fulleritakh. — Dnepropetrovsk: Nauka i Obrazovanie, 2002. — 420 pGoogle Scholar
  31. 31.
    31.Matysina Z.A., Zaginaichenko S.Yu. Defecty structury kristallov. —Dnepropetrovsk: Nauka i Obrazovanie, 2003. —284 pGoogle Scholar
  32. 32.
    32.Matysina Z.A., Zaginaichenko S.Yu., Schur D.V. Rastvorimost primesey v metallah, splavah, intermetallidah, fulleritah. — Dnepropetrovsk: Nauka i Obrazovanie, 2006. — 514 pGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  • S. Yu. Zaginaichenko
    • 1
  • D. V. Schur
    • 1
  • T. A. Trifonova
    • 1
  • Z. A. Matysina
    • 2
  1. 1.Frantsevich Institute for Problems of Materials Science of NASU 3KyivUkraine
  2. 2.Dnepropetrovsk National UniversityDnepropetrovskUkraine

Personalised recommendations