Advertisement

THEORY OF CHEMISORPTION OF A SINGLE HYDROGEN ATOM ON GRAPHENE

  • V. A. Margulis
  • E. E. Muryumin
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Abstract

A theory of chemisorption relevant to a single hydrogen atom on a monolayer graphene is presented. The electronic structure of graphene is described within an effective-mass approximation. The chemisorption problem is investigated by using the Anderson-Newns model, which takes account of the intra-atomic electron-electron interaction on the adatom. Three different adsorption positions of the adatom are considered: directly above a C atom (position I), over a C—C bond (position II), and above the center of a hexagon of carbon atoms (position III). The adatom Green's function, the charge transfer between the chemisorbed H atom and the substrate graphene, and the adsorption energy of a single H atom are calculated. It is found that at reasonable values of the parameters entering the model, position I is the most stable one for the H atom binding to graphene.

Keywords

graphene chemisorption Green's function methods semi-empirical models and model calculations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V. and Firsov A.A. (2004) Electric field effect in atomically thin carbon films, Science 306, P. 666–669PubMedCrossRefADSGoogle Scholar
  2. 2.
    Geim A.K. and Novoselov K.S. (2007) The rise of graphene, Nat. Mater. 6(3), P. 183–191PubMedCrossRefADSGoogle Scholar
  3. 3.
    Anderson P.W. (1961) Localized magnetic states in metals, Phys. Rev. 124(1), P. 41–53CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Newns D.M. (1969) Self-consistent model of hydrogen chemisorption, Phys. Rev. 178(3), P. 1123–1135CrossRefADSGoogle Scholar
  5. 5.
    Margulis Vl.A., Muryumin E.E. and Tomilin O.B. (2004) Theoretical study of atomic chemisorption on single-walled carbon nanotubes. Application of Anderson-Newns model, Physica B 353(3–4), P. 314–323CrossRefADSGoogle Scholar
  6. 6.
    Margulis Vl.A. and Muryumin E.E. (2007) Atomic oxygen chemisorption on the sidewall of zigzag single-walled carbon nanotubes. Phys. Rev. B 75(3), 035429/1-035429/12CrossRefADSGoogle Scholar
  7. 7.
    Margulis Vl.A. and Muryumin E.E. (2007) Chemisorption of single fluorine atoms on the surface of zigzag single-walled carbon nanotubes: A model calculation. Physica B 390(1–2), P. 34–142Google Scholar
  8. 8.
    Margulis Vl.A., Muryumin E.E. and Tomilin O.B. (2007) Binding of a fluorine atom to the sidewall of single-walled carbon nanotubes. In: Hydrogen Materials Science and Chemistry of Carbon Nanomaterials, edited by T.N. Veziroglu et al., Springer, Berlin, P. 789–793Google Scholar
  9. 9.
    Gadzuk J.W., Hartman J.K. and Rhodin T.N. (1971) Approach to alkali-metal chemisorption within the Anderson model, Phys. Rev. B 4(2), P. 241–255CrossRefADSGoogle Scholar
  10. 10.
    Ando T. (2006) Anomaly of optical phonon in monolayer graphene, J. Phys. Soc. Jpn. 75(12), 124701/1–124701/5CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  • V. A. Margulis
    • 1
  • E. E. Muryumin
    • 2
  1. 1.Department of PhysicsN.P. Ogarev Mordovian State UniversitySaranskRussian Federation
  2. 2.Department of ChemistryN.P. Ogarev Mordovian State UniversitySaranskRussian Federation

Personalised recommendations