Skip to main content

SOME PHYSICAL ASPECTS OF BCC HYDROGEN STORAGE ALLOYS

  • Conference paper
Carbon Nanomaterials in Clean Energy Hydrogen Systems
  • 1412 Accesses

Abstract

Hydrogen absorption/desorption has been investigated in the three series of solid solution bcc alloys and It has been found that H absorption at pressures smaller than one bar can only occur after elimination of the oxide films by heating the alloys to temperatures higher than 600 K. Hydrogen desorption from pre-loaded materials (nH = H/Me ≥ 0.27) takes place on heating at much lower temperatures in the than in the alloys. The H diffusion parameters W and Do deduced from high temperature (>450 K) absorption experiments are: The higher value of the activation energy for H diffusion in Mo containing alloys is most likely due to H trapping by Mo atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akiba E., Iba H., Intermetallics, 1998. 6: 461–470

    Article  CAS  Google Scholar 

  2. Cho S.W., Han C.S., Park C.N., Akiba E., J. Alloy. Compd., 1999. 288: 294–298

    Article  CAS  Google Scholar 

  3. Tamura T., Kamegawa A., Takamura H., Okada M., Mater. Trans., 2001. 42: 1862–1865, ibid. 2002. 43: 2753–2756

    Article  CAS  Google Scholar 

  4. Okada M., Kuriiwa T., Kamegawa A., Takamura H., Mater. Sci. Eng., 2002. A329–331: 305–312

    Google Scholar 

  5. Itoh H., Arashima H., Kubo K., Kabutomori T., J. Alloys Compds., 2002. 330–332: 287–291

    Article  Google Scholar 

  6. Tamura T., Kamegawa A., Takamura H., Okada M., Mater. Trans., 2002. 43: 410–413

    Article  CAS  Google Scholar 

  7. Tamura T., Kazumi T., Kamegawa A., Takamura H., Okada M., Mater. Trans., 2002. 43: 2753–2756

    Article  CAS  Google Scholar 

  8. Okada M., Kuriiwa T., Tamura T., Takamura H., Kamegawa A., J. Alloys Compds., 2002. 330–332: 511–516

    Article  Google Scholar 

  9. Kazumi T., Tamura T., Kamegawa A., Takamura H., Okada M., Mater. Trans., 2002. 43: 2748–2752

    Article  CAS  Google Scholar 

  10. Shirasaki K., Tamura T., Kuriiwa T., Goto T., Kamegawa A., Takamura H., Okada M., Mater. Trans., 2002. 43: 1115–1119

    Article  CAS  Google Scholar 

  11. Kamegawa A., Shirasaki K., Tamura T., Kuriiwa T., Takamura H., Okada M., Mater. Trans., 2002. 43: 470–473

    Article  CAS  Google Scholar 

  12. Okada M., Chou T., Kamegawa A., Tamura T., Takamura H., Matsukawa A., Yamashita S., J. Alloy. Compd. 2003. 356–357: 480–485

    Article  CAS  Google Scholar 

  13. Arashima H., Takahashi F., Ebisawa T., Itoh H., Kabutomori T., J. Alloy. Compd., 2003. 356–357: 405–408

    Article  CAS  Google Scholar 

  14. Cho J.S., Park C.N., Yoo J.H., Choi J., Park J.S., Suh C.Y., Shim G., J. Alloy. Compd., 2005. 403: 262–266

    Article  CAS  Google Scholar 

  15. Itoh H., Arashima H., Kubo K., Kabutomori T., Ohnishi K., J. Alloy. Compd., 2005. 404–406: 417–420

    Article  CAS  Google Scholar 

  16. Mazzolai G., Coluzzi B., Biscarini A., Mazzolai F.M., Tuissi A., Palade P., Principi G., Lo Russo S., J. Alloy. Compd., In preparation

    Google Scholar 

  17. Yu X.B., Wu Z., Xia B.J., Huang T., Chen J.Z., Wang Z., Xu N., J. Mater. Res., 2003. 18: 2533–2536

    Article  ADS  CAS  Google Scholar 

  18. Yu X.B., Xia B.J., Xu N.X., J. Alloy. Compd., 2004. 372: 272–277

    Article  CAS  Google Scholar 

  19. Yu X.B., Chen J.Z., Wu Z., Xia B.J., Xu N., Int. J. Hydrogen Energ., 2004. 29: 1377–1381

    Article  CAS  Google Scholar 

  20. Yu X.B., Xia B.J., Wu Z., Xu N., Mater. Sci. Eng., 2004. A, 373: 303–308

    Google Scholar 

  21. Yu X.B., Wu Z., Xia B.J., Xu N.X., J. Alloy. Compd., 2004. 373: 134–136

    CAS  Google Scholar 

  22. Yu X.B., Wu Z., Xia B.J., Xu N.X., J. Alloy. Compd., 2005. 386: 258–260

    Article  CAS  Google Scholar 

  23. Yu X.B., Feng S.L., Wu Z., Xia B.J., Xu N.X., J. Alloy. Compd., 2005. 393: 129–134

    Article  CAS  Google Scholar 

  24. Yu X.B., Dou T., Wu Z., Xia B.J., Xu N.X., Nanotechnology, 2006. 17: 268–271

    Article  ADS  CAS  Google Scholar 

  25. Mazzolai G., Biscarini A., Coluzzi B., F.M. Mazzolai, Tuissi A., Chem. Eng. Trans., 2005. 8: 165–170

    Google Scholar 

  26. Mazzolai G., Coluzzi B., Biscarini A., Mazzolai F.M., Tuissi A., Proc. Mater. Res. Soc. Symp., 2006. 885E: 215–220

    Google Scholar 

  27. Kamegawa A., Tamura T., Takamura H., Okada M., J. Alloy. Compd., 2003. 356–357: 447–451

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Mazzolai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this paper

Cite this paper

Mazzolai, G. (2008). SOME PHYSICAL ASPECTS OF BCC HYDROGEN STORAGE ALLOYS. In: Baranowski, B., Zaginaichenko, S.Y., Schur, D.V., Skorokhod, V.V., Veziroglu, A. (eds) Carbon Nanomaterials in Clean Energy Hydrogen Systems. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8898-8_14

Download citation

Publish with us

Policies and ethics