Advertisement

Data Mining for Bioinformatics — Microarray Data

  • T.V. Prasad
  • S.I. Ahson

Abstract

Data could be of any form, symbolic or non-symbolic, continuous or discrete, spatial or non-spatial, it should be understood that whenever the data store becomes voluminous, it requires efficient algorithms to mine out required data as well as provide methods to answer various queries. Though the data analysis techniques are useful in almost all disciplines of study, greater emphasis is given in the area of bioinformatics for mining microarray gene expression data as well as gene sequence data. Considerable work is being done in preparation of protein arrays and corresponding visualization techniques.

Keywords

Support Vector Machine Microarray Gene Expression Data Principal Component Anal Bioin Formatics Stance Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Kanhal, M.I. and Al-Hendi, R.I. (1992). Arabic phoneme map based on vector quantization neural networks. Graduate Thesis, King Saud University, Saudi Arabia.Google Scholar
  2. Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Rosenwald, A., Boldrick, J.C., Sabet, H., Tran, T., Yu, X., Powell, J.I., Yang, L., Marti, G.E., Moore, T., Hudson, J.Jr., Lu, L., Lewis, D.B., Tibshirani, R., Sherlock, G., Chan, W.C., Greiner, T.C., Weisenburger, D.D., Armitage, J.O., Warnke, R., Levy, R., Wilson, W., Grever, M.R., Byrd, J.C., Botstein, D., Brown, P.O. and Staudt, L.M. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 403(3): 503–511.PubMedCrossRefGoogle Scholar
  3. Alter, O., Brown, P.O. and Botstein, D. (2000). Singular value decomposition for genome-wide expression data processing and modeling. Proc. Natl. Acad. of Sc. USA, 97(18): 10101–10106.CrossRefGoogle Scholar
  4. Anderson, J.A. (2001). An Introduction to Artificial Neural Networks. Prentice Hall of India, New Delhi.Google Scholar
  5. Baldi, P. and Brunak, S. (2003). Bioinformatics: The Machine Learning Approach. Affiliated East-West Press Pvt. Ltd., New Delhi.Google Scholar
  6. Baldi, P. and Hatfield, G.W. (2001). Microarrays and Gene Expression. Cambridge University Press, Cambridge.Google Scholar
  7. Bassett, D. Jr, Eisen, M.B. and Boguski, M.S. (1999). Gene Expression Informatics — it’s all in your mind. Nature Genetics, Supplement 21.Google Scholar
  8. Ben-Dor, A., Shamir, R. and Yakhini, Z. (1999). Clustering gene expression patterns. Journal of Computational Biology, 6(3/4): 281–297.PubMedCrossRefGoogle Scholar
  9. Bergeron, B. (2003). Bioinformatics Computing. Prentice Hall of India, New Delhi.Google Scholar
  10. Bowtell, D. (1999). Options available — from start to finish — for obtaining expression data by microarray. Nature Genetics, Supplement 21.Google Scholar
  11. Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P.T., Stoeckert, C., Aach, J., Ansorge, W., Ball, C.A., Causton, H.C., Gaasterland, T., Glenisson, P., Holstege, F.C.P., Kim, I.F., Markowitz, V., Matese, J.C., Parkinson, H., Robinson, A., Sarkans, U., Schulze-Kremer, S., Stewart, J., Taylor, R., Vilo, J. and Vingron, M. (2001). Minimum information about a microarray experiment (MIAME) — toward standards for microarray data. Nature Genetics, 29: 365–371.PubMedCrossRefGoogle Scholar
  12. Caron, H., van Schaik, B., van der Mee, M., Baas, F., Riggins, G., van Sluis, P., Hermus, M.C., van Asperen, R., Boon, K., Voute, P.A., van Kampen, A. and Versteeg, R. (2001). The Human Transcriptome Map: Clustering of highly expressed genes in chromosomal domains. Science, 291: 1289–1292.PubMedCrossRefGoogle Scholar
  13. Carr, D.B., Somogyi, R. and Micheals, G. (1997). Templates for looking at gene expression clustering. Stat. Comput. & Stat. Graph. Newsletter, 20–29.Google Scholar
  14. Chakraborty, C. (2004). Bioinformatics: Approaches and Applications. Biotech Books, Delhi.Google Scholar
  15. Chee, M.C., Yang, R., Hubbell, E., Berno, A., Huang, X.C., Stern, D., Winkler, J., Lockhart, D.J., Morris, M.S. and Fodor, S.P.A. (1996). Accessing genetic information with high-density DNA arrays. Science, 274: 610–614.PubMedCrossRefGoogle Scholar
  16. Chen, D., Chang, R.F. and Huang, Y.L. (2000). Breast cancer diagnosis using self-organizing map for sonography. Ultrasound Medical Biology, 26(3): 405–411.CrossRefGoogle Scholar
  17. Chen, C.H. et al. (2004). Generalized Association Plots (GAP), Presentation on “Cluster Analysis and Visualization”. In: Workshop on Statistics and Machine Learning, Institute of Statistical Science.Google Scholar
  18. Cho, S.B. and Won, H.H. (2003). Machine learning in DNA microarray analysis for cancer classification. Conferences in Research and Practice in Information Technology, 19 (Ed. Yi-Ping Phoebe Chen, Australian Computer Society).Google Scholar
  19. Churchill, G.A. (2002). Fundamentals of experimental design for cDNA microarrays. Nature Genetics, 32 Suppl: 490–495.PubMedCrossRefGoogle Scholar
  20. D’haeseleer, P., Wen, X., Fuhrman, S. and Somogyi, R. (1997). Mining the gene expression matrix: Inferring gene relationships from large scale gene expression data. In: Information processing in cells and tissues (eds. Paton, R.C. and Holcombe, M.). Plenum Press, 203–212.Google Scholar
  21. DeRisi, J., Penland, L., Brown, P.O., Bittner, M.L., Meltzer, P.S., Ray, M., Chen, Y., Su, Y.A. and Trent, J.M. (1996). Use of a cDNA microarray to analyze gene expression patterns in human cancer. Nature Genetics, 14(4): 457–460.PubMedCrossRefGoogle Scholar
  22. Dopazo, J. (2002). Microarray data processing and analysis. In: Microarray Data Analysis II. Kluwer Academic Publ., 43–63.Google Scholar
  23. Dudoit, S. and Gentleman, R. (2002a). Cluster analysis in DNA microarray experiments. Bioconductor Short Course, Presentation slides.Google Scholar
  24. Dudoit, S., Fridlyand, J. and Gentleman, R. (2002b). Classification analysis in DNA Microarray experimetns. Bioconductor Short Course, Presentation slides.Google Scholar
  25. Durbin, B.P., Hardin, J.S., Hawkins, D.M. and Rocke, D.M. (2002). A variance-stabilizing transformation for gene-expression microarray data. Bioinformatics, 18(90001): S105–S110.PubMedGoogle Scholar
  26. Eijssen, L. (2000). Cluster analysis of microarray gene expression data. Master’s thesis, Faculty of General Sciences, Maastricht University, The Netherlands.Google Scholar
  27. Eisen, M.B., Spellman, P.T., Brown, P.O. and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. of Sc. USA, 95: 14863–14868.CrossRefGoogle Scholar
  28. Ewing, R.M. and Cherry, J.M. (2001). Visualization of expression clusters using Sammon’s non-linear mapping. Bioinformatics, 17(7).Google Scholar
  29. Freeman, J.A. and Skapura, D.M. (1991). Neural Networks. Addison Wesley, USA.Google Scholar
  30. Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M. and Haussler, D. (2000). Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 16: 906–914.PubMedCrossRefGoogle Scholar
  31. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D. and Lander, E.S. (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286: 531–537.PubMedCrossRefGoogle Scholar
  32. Hacia, J.G., Brody, L.C., Chee, M.S., Fodor, S.P. and Collins, F.S. (1996). Detection of heterozygous mutations in BRCA1 using high density oligonucleotide arrays and two-colour fluorescence analysis. Nature Genetics, 14: 441–447.PubMedCrossRefGoogle Scholar
  33. Han, J. and Kamber, M. (2001). Data Mining: Concepts and Techniques. Elsevier, San Francisco, USA.Google Scholar
  34. Haykin, Simon (1999). Artificial Neural Networks: A Comprehensive Foundation 2nd ed. Addison Wesley.Google Scholar
  35. Hedenfalk, I., Duggan, D., Chen, Y., Radmacher, M., Bittner, M., Simon, R. et al. (2001). Gene-expression profiles in hereditary breast cancer. New England Journal of Medicine, 344: 539–548.PubMedCrossRefGoogle Scholar
  36. Herroro, J., Valencin, A. and Dopazo, J. (2001). A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics, 17: 126–136CrossRefGoogle Scholar
  37. Hwang, K.B., Cho, D.Y., Park, S.W., Kim, S.D. and Zhang, B.T. (2001). Applying machine learning techniques to analysis of gene expression data: Cancer Diagnosis. In: Methods of Microarray Data Analysis Kluwer Academic, 167–182.Google Scholar
  38. Iyer, V.R, Eisen, M.B., Ross, D.T, Schuler, G., Moore, T., Lee, J.C.F., Trent, J.M., Staudt, L.M., Hudson Jr. J., Boguski, M.S., Lashkari, D., Shalon, D., Botstein, D. and Brown, P.O. (1999). The transcriptional program in response of human fibroblasts to serum. Science, 283: 83–87.PubMedCrossRefGoogle Scholar
  39. Jagota, Arun (2001). Microarray data analysis and visualization. Dept. of Computer Engineering, University of California, CA., USA.Google Scholar
  40. Kaski, S. (1997). Data exploration using self-organizing maps. Doctor of Technology Thesis, Helsinki University of Technology, Espoo, Finland.Google Scholar
  41. Kapushesky, M., Kemmeren, P., Culhane, A. C., Durinck, S., Ihmels, J., Körner, C., Kull, M., Torrente, A., Sarkans, U., Vilo, J. and Brazma, A. (2004). Expression Profiler: next generation-an online platform for analysis of microarray data. Nucleic Acids Research, 32 (Web Server issue): W465–W470.PubMedCrossRefGoogle Scholar
  42. Khan, J., Wei, J.S., Ringnér, M., Saal, L.H., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu, C.R., Peterson, C. and Meltzer, P.S. (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks, Nature Medicine, 7(6): 673–679.PubMedCrossRefGoogle Scholar
  43. Klingbiel, D. (2003). Singular value decomposition for feature selection in cDNA arrays, Talk at Max Plank Institute for Molecular Genetics, Germany, available at http://compdiag.molegen.mpg.de/docs/talk_03_03_03_klingbiel.pdf.Google Scholar
  44. Koren, Y. and Carmel, L. (2003). Visualization of labeled data using linear transformation, Proceedings of IEEE Information Visualization (InfoVis’ 03), IEEE, pp. 121–128, Presentation slides, available at http://www.cs.ubc.ca/~tmm/courses/cpsc533c-04-spr/slides/update.0317.mtan.ppt.Google Scholar
  45. Kurimo, M. (1997). Using self-organizing maps and learning vector quantization for mixture density hidden Markov models. Doctor of Technology Thesis, Helsinki University of Technology, Espoo, Finland.Google Scholar
  46. La Vigna, A. (1989). Non-parametric classification using learning vector quantization. Ph.D. thesis, University of Maryland, USA.Google Scholar
  47. Li, L., Weinberg, C.R., Darden, T.A. and Pederson, L.G. (2001). Gene selection for sample classification based on gene expression data: Study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics, 17(12), 1131–1142.PubMedCrossRefGoogle Scholar
  48. Liao, L. (2002). Clustering and classification and their applications in bioinformatics. Lecture notes, Discovery Information and High Performance Computing, (ELEG 667).Google Scholar
  49. Luo, F., Tang, K. and Khan, L. (2003). Hierarchical clustering of gene expression data. University of Dallas, TX, USA.Google Scholar
  50. Mount, D.W. (2001). Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor Laboratory Press, NY, USA.Google Scholar
  51. Narayanan, A., Keedwell, E.C. and Olsson, B. (2003). Artificial intelligence techniques for bioinformatics. Applied Bioinformatics, Open Mind Journals.Google Scholar
  52. Nilsson, J. (2002). Methods for classification of gene expressions. Master’s thesis, Centre for Mathematics, Lund University, Lund, SwedenGoogle Scholar
  53. Phanikumar, B. (2002). Clustering algorithms for microarray data mining. Masters’ Thesis, Institute of Systems Research, University of Maryland, USA.Google Scholar
  54. Pocock, M.R. and Hubbard, T.J.P. (2000). A browser for expression data. Bioinformatics, 16(4).Google Scholar
  55. Prasad, T.V. and Ahson, S.I. (2005a). Visualization of microarray gene expression data. Bioinformation, 2006.Google Scholar
  56. Prasad, T.V. and Ahson, S.I. (2005b). Application of Learning Vector quantization on microarray gene expression data. Bioinformation, submitted.Google Scholar
  57. Prasad, T.V., Ravindra Babu, P. and Ahson, S.I. (2005c). GEDAS — Gene Expression Data Analysis Suite Software. Bioinformation, 2006.Google Scholar
  58. Quackenbush, J. (2002). Microarray data normalization and transformation. Nature Genetics, 32 Suppl: 496–501.PubMedCrossRefGoogle Scholar
  59. Ramaswamy, S., Tamayo, P., Rifkin, R., Mukherjee, S., Yeang, C.H., Angelo, M., Ladd, C., Reich, M., Latulippe, E., Mesirov, J.P., Poggio, T., Gerald, W., Loda, M., Lander, E.S. and Golub, T.R. (2001). Multiclass cancer diagnosis using tumor gene expression signatures. Proc. Natl. Acad. of Sc., USA, 98(26): 15149–15154.CrossRefGoogle Scholar
  60. Raychaudhuri, S., Stuart, J.M., and Altman, R.B. (2000). Principal components analysis to summarize microarray experiments: Application to sporulation time series. Pacific Symposium of Biology, 5: 452–463.Google Scholar
  61. Sharan, R., Elkon, R. and Shamir, R. (2001). Cluster analysis and its applications to gene expression data. Ernst Schering Workshop on Bioinformatics and Genome Analysis. Springer Verlag.Google Scholar
  62. Sing, J.K., Basu, D.K., Nasipuri, M. and Kundu, M. (2003). Improved k-means algorithm in the design of RBG neural networks. Proceedings of IEEE TENCON 2003, Bangalore, India, October 2003.Google Scholar
  63. Slonim, D., Tamayo, P., Mesirov, J., Golub, T.R. and Lander, E. (2000). Class prediction and discovery using gene expression data. Proceedings of RECOMB 2000.Google Scholar
  64. Spellman, P.T., Miller, M., Stewart, J., Troup, C., Sarkans, U., Chervitz, S., Bernhart, D., Sherlock, G., Ball, C.A., Lepage, M., Swiatek, M., Marks, W.L., Goncalves. J., Market, S., Iordan, D., Shojatalab, M., Pizarro, A., White, J., Hubley, R., Deutsch, E., Senger, M., Aronow, B.J., Robinson, A., Bassett, D., Stoeckert, J. Jr. and Brazma, A. (2002). Design and implementation of microarray gene expression markup language (MAGE-ML). Genome Biology, 3(9).Google Scholar
  65. Stolovitzky, G., Lepre, J. and Tu, Y. (2004). Gene expression pattern discovery in gene expression microarrays. Presentation slides, available at http://www.ibm.com/solutions/lifesciences.Google Scholar
  66. Szallasi, Z. (1998). Gene expression patterns and cancer. Nature Biotechnology, 16: 1292–1293.PubMedCrossRefGoogle Scholar
  67. Talavera, L. (2000). Dependency-Based Feature Selection for Clustering Symbolic Data. Intelligent Data Analysis, 4: 19–28.Google Scholar
  68. Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J. and Church, G.M. (1999). Systematic determination of genetic network architecture. Nature Genetics, 22: 218–285.Google Scholar
  69. Tibshirani, R., Hastie, T., Eisen, M., Ross, D., Botstein, D. and Brown, P. (1999). Clustering methods for the analysis of DNA microarray data. Technical Report, Stanford University, USA.Google Scholar
  70. Toronen, P., Kolehmainen, M., Wong, G. and Castren, E. (1999). Analysis of gene expression data using self-organizing maps. FEBS Letters, 451(2): 142–146.PubMedCrossRefGoogle Scholar
  71. Vijaya, P.A., Murty, M.N. and Subramaniam, D.K. (2003). An efficient increamental protein sequence clustering algorithm. Proceedings of IEEE TENCON 2003. Bangalore, India, October 2003.Google Scholar
  72. Vipin Kumar (2002). Data Mining Algorithms. Tutorial at IPAM 2002, Presentation slides.Google Scholar
  73. Wall, M.E., Rechtsteiner, A. and Rocha, L.M. (2003). Singular value decomposition and principal component analysis. In: A Practical Approach to Microarray Data Analysis (eds. Berrar, D.P., Dubitzky, W., Granzow, M.), 91–109. Kluwer, MA, USA.CrossRefGoogle Scholar
  74. Wen, X., Fuhrman, S., Michaels, G.S., Carr, D.B., Smith, S., Barker, J.L. and Somogyi, R. (1998). Large-scale temporal gene expression mapping of central nervous system development. Proc. Natl. Acad. of Sc. USA, 95(1): 334–339.CrossRefGoogle Scholar
  75. Westhead, D.R., Parish, J.H. and Twyman, R.M. (eds) (2003). Instant Notes on Bioinformatics. BIOS Scientific Publishers Ltd., Oxford, UK.Google Scholar
  76. White, K.P., Rifkin, S.A., Hurban, P. and Hogness, D.S. (1999). Microarray analysis of Drosophila development during metamorphosis. Science, 286(5447): 2179–2184.PubMedCrossRefGoogle Scholar
  77. Wong, W.H. and Li, C. (2001a). Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detection. Proc. of Natl. Acad. of Sc. USA, 98(1): 31–36.CrossRefGoogle Scholar
  78. Wong, W.H. and Li, C. (2001b). Model-based analysis of oligonucleotide arrays: Model validation, design issues and standard error application. Genome Biology, 2(8): research 0032.1–0032.11.Google Scholar
  79. Wooley, J.C. and Lin, H.S. (2001). Catalyzing inquiry at the interface of Computing and Biology. The National Academies Press, Washington D.C., available at http://genomics.energy.goy.Google Scholar
  80. Yang, Y.H., Dudoit, S., Luu, P. and Speed, T.P. (2001). Normalization for cDNA microarray data. Microarray Data Technical Report 589, SPIE BiOS 2001, San Jose, California, USA.Google Scholar
  81. Yeang, C.H., Ramaswamy, S., Tamayo, P., Mukherjee, S., Rifkin, R.M., Angelo, M., Reich, M., Lander, E., Mesirov, J. and Golub, T. (2001). Molecular classification of multiple tumor types. Bioinformatics, 17: 316S–322S.Google Scholar
  82. Yeung, K.Y. and Ruzzo, W.L. (2001). Principal component analysis for clustering gene expression data. Bioinformatics, 17: 763–774.PubMedCrossRefGoogle Scholar
  83. Yeung, K.Y., Haynor, D.R. and Ruzzo, W.L. (2001b). Validating clustering for gene expression data. Bioinformatics, 17(4): 309–318.PubMedCrossRefGoogle Scholar
  84. Zhang, M.Q. (1999). Large-scale gene expression data analysis: A new challenge to computational biologists. Genome Research. 9: 681–688.PubMedGoogle Scholar

Websties

  1. Chang, C.C. and Lin, C.J. (2004). LibSVM: A library for support vector machine. Available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.Google Scholar
  2. Colantouni, C., Henry, G. and Pevsner, J. (2000). Standardization and Normalization of Microarray Data (SNOMAD) software. Available at http://pevsnerlab.kennedykrieger.org/snomad.htm.Google Scholar
  3. de Hoon, M., Imoto, S. and Miyano, S. (2004). The C Clustering Library (Cluster 3.0) software. University of Tokyo, Institute of Medical Science, Human Genome Center, Japan, available at http://bosai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster.Google Scholar
  4. Dopazo, J. (1999). Self-organizing Tree Algorithm (SOTA), DNA-array data analysis with SOM, Bioinformatics Unit at CNIO. Available at http://bioinfo.cnio.es/docus/SOTA/#Software.Google Scholar
  5. Eisen Lab (1998). Cluster and Tree View software (Hierarchical clustering, k-means and tree display). Available at http://rana.lbl.gov/EisenSoftware.htm.Google Scholar
  6. Johnny, R. (2002). Analysis of microarray gene expression data. Presentation slides. Available at www.kuleuven.ac.be/bio/mcb/ internet/downloads/gene_expression.pdf.Google Scholar
  7. Kohonen, T., Hynninen, J., Kangas, J., Laaksonen, J. and Torkkola, K. (1996). LVQ_PAK: The learning vector quantization package. Technical Report A30, Helsinki University of Technology, Finland. Available at http://cs.hut.fi.Google Scholar
  8. Leung, Y.F. (2002). My microarray journal watch. University of Hong Kong, Website available at http://ihome.cuhk.edu.hk/~b400559/1999j_mray.html.Google Scholar
  9. Merelo, J.J. and Prieto, A. (1994). G-LVQ — a combination of genetic algorithms and LVQ. Available at http://geneura.ugr.es/g-lvq/g-lvq.html.Google Scholar
  10. Shapiro, G. P. and Ramaswamy, S. (2002). SPSS Clementine microarray Clementine Application Template (CAT). Presentation slides, available at http://www.spssscience.com.Google Scholar
  11. SilicoCyte (2004). SilicoCyte v 1.3 software. Available at http://www.silicocyte.com.Google Scholar
  12. Stanford Biomedical Informatics (2004). Cleaver 1.0. Helix Bioinformatics Group, Stanford School of Medicine, Stanford University, USA. A vailable at http://classify.stanford.edu.Google Scholar
  13. Thomas, C. (2001). CISC 873, Data Mining Notes: What is Clustering? Lecture Notes, Queen’s University. Available at www.cs.queensu.ca/home/thomas/notes/basic_association.html.Google Scholar
  14. Tom Sawyer (2003). Tom Sawyer software Image Gallery. Website available at http://www.tomsawyer.com/gallery/gallery.php?printable=1.Google Scholar

More suggested literature and website resources

  1. Altinok, A. (1998). Adaptive pattern classification: Kohonen SOM and LVQ1, Presentation slides.Google Scholar
  2. Bentley, P.J. (2001). Digital Biology. Simon & Schuster, New York, USA.Google Scholar
  3. Brazma, A. and Vilo J. (2000). Gene expression data analysis. Mini Review. FEBS 23893, FEBS Letters 480, Elsevier Science.Google Scholar
  4. Butte, A. (2002). The use and analysis of microarray data. Nature Reviews, Drug Discovery, 1: 951–960.CrossRefGoogle Scholar
  5. Chiang, D.Y., Brown, P.O. and Eisen, M.B. (2001). Visualizing associations between genome sequences and gene expression data using genome-mean expression profiles. Bioinformatics, 17: 49S–55S.Google Scholar
  6. Collobert, R. and Bengio, S. (2001). SVM Torch: Support vector machines for largescale regression problems. Journal of Machine Learning Research, 1: 143–160.CrossRefGoogle Scholar
  7. Cooper, M.C. and Milligan, G.W. (1988). The effect of error on determining the number of clusters. Proc. of the International Workshop on Data Analysis, Decision Support and Expert Knowledge Representation in Marketing and Related Areas of Research, 319–328.Google Scholar
  8. Cortes, C. and Vapnik, V. (1995). Support Vector Networks. Machine Learning, 20: 1–25.Google Scholar
  9. Davoli, R. (2001). Neural Networks. Dept. of Computer Science, University of Bologna, Italy, Presentation slides.Google Scholar
  10. Dougherty, E.R., Barrera, J., Brun, M., Kim, S., Cesar, R.M., Chen, Y., Bittner, M. and Trent, J.M. (2002). Inference from clustering with application of gene expression microarrays. Journal of Computational Biology, 9(1): 105–126.PubMedCrossRefGoogle Scholar
  11. DeRisi Lab. Department of Biochemistry & Biophysics, University of California at San Francisco. Website available at http://www.microarrays.org.Google Scholar
  12. DNA Microarrays (a). Web site available at http://www.biologie.eus.fr/en/genetique/puces/microarraysframe.html.Google Scholar
  13. DNA Microarrays (b). Web site available at http://dnamicroarrays.info.Google Scholar
  14. Duggan, D.J., Bittner, M., Chen, Y., Meltzer, P. and Trent, J.M. (1999). Expression profiling using cDNA microarrays. Nature Genetics, 21(1 Suppl.): 10–14.PubMedCrossRefGoogle Scholar
  15. European Bioinformatics Institute (EBI). EBI website available at http://www.ebi.ac.uk/microarray.Google Scholar
  16. Ewing, R.M., Kahla, A.B., Poirot, O., Lopez, F., Audic, S. and Claverie, J.M. (1999). Large-scale statistical analyses of rice ESTs reveal correlated patterns of gene expression. Genome Research, 10: 950–959.CrossRefGoogle Scholar
  17. Fuente, A. de la and Mendes, P. (2003). Integrative modeling of gene expression and cell metabolism. Applied Bioinformatics, Open Mind Journals, 2(2): 79–90.Google Scholar
  18. Gene Expression Data Analysis (GEDA) Tool. GEDA software. University of Pennsylvania MC Health Systems. Available at http://bioinformatics.upmc.edu/GE2/GEDA.html.Google Scholar
  19. Gene Expression Pattern Analysis Suite (GEPAS) v 1.0. the SOM Server Available at http://gepas.bioinfo.cnio.es.Google Scholar
  20. GenomeWeb LLC (2005). Microarray Innovators. I. Available at http://www.bioarraynews.com.Google Scholar
  21. Gibas, C. and Jambeck, P. (2001). Developing Bioinformatics Computer Skills. O’Reilly & Associates, CA, USA.Google Scholar
  22. Gutkhe, R., Schmidt-Heck, W., Hahn, D. and Pfaff, M. (2000). Gene expression data mining for functional genomics using fuzzy technology. In: Intelligent Applications in Biomedicine, Advances in Computational Intelligence and Learning.Google Scholar
  23. Hollmen, J., Tresp, V. and Simula, O. (2000). A learning vector quantization algorithm for probabilistic models. Proc. of EUSIPCO 2000, Vol. II.Google Scholar
  24. Joachims, T. (1999). Support Vector Machines (SVMlight) software. Available at http://svmlight.joachims.org.Google Scholar
  25. Kim, H. (2002). Microarray analysis II: Whole-genome expression analysis. CISC889: Bioinformatics course. Presentation slides, available at www.innu.org/~super/dnac/microarray.ppt.Google Scholar
  26. Lesk, A.M. (2002). Introduction to Bioinformatics. Oxford University Press, NY, USA.Google Scholar
  27. Makino, S., Ito A., Endo, M. and Kido, K. (1991). A Japanese text diction recognition and a dependency grammar. IEICE Transaction, E 74(7): 1773–1782.Google Scholar
  28. Milligan, G.W. and Cooper, M.C. (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50: 159–179.CrossRefGoogle Scholar
  29. Mitchell, T.M. (1997). Machine Learning. McGraw Hill International Edition, New Delhi, India.Google Scholar
  30. Molmine. J-Express Pro 2.6 software (Hierarchical clustering, self-organizing maps, and principal components analysis). University of Bergen. Available at http://www.molmine.com.Google Scholar
  31. National Cancer Institute (2002). Gene Expression Data Portal (GEDP). National Institutes of Health, USA. Available at http://gedp.nci.nih/gov/dc/servlet/manager.Google Scholar
  32. National Centre for Biotechnology Information (2002). Gene Expression Omnibus (GEO). National Institutes of Health, USA Gene expression datasets available at ftp://ftp/ncbi.nih.gov/pub/ge/data/gds/soft.Google Scholar
  33. Prasad, T.V. and Ahson, S.I. (2003). Labeling gene expression data using vector quantization. Proc. of 3rd RECOMB Satellite Conference. Stanford University, USA.Google Scholar
  34. Prasad, T.V. and Ahson, S.I. (2004). Analysis of microarray gene expression data. Proc. of 2nd Intl. Conference on Artificial Intelligence Applications in Engineering and Information Technology (ICAIET), Universiti Malaysia Sabah, Malaysia.Google Scholar
  35. Sasik, R., Hwa, T., Iranfar, N. and Loomis, W.F. (2001). Percolation clustering: A novel approach to the clustering of gene expression patterns in Dictyostelium development. Pacific Symposium of Biocomputing, 335–347.Google Scholar
  36. Shamir, R. and Sharan, R. (2002). Algorithmic approaches to clustering gene expression data. In: Current Topics in Computational Molecular Biology (eds. Jiang et al.), 269–300, MIT Press.Google Scholar
  37. Sturn, A., Quackenbush, J. and Trajanoski, Z. (2002). Genesis: cluster analysis of microarray data. Bioinformatics, 18(1): 207–208.PubMedCrossRefGoogle Scholar
  38. Pat Brown Lab. Stanford Uiiversity. Website available at http://cmgm.stanford.edu/pbrown/.Google Scholar
  39. Reich, M., Ohm, K., Tamayo, P., Angelo, M. and Mesirov, J.P. (2004). GeneCluster 2.0: An advanced toolset for bioarray analysis. Bioinformatics. Earlier version available from Lander and Golub (1999). Whitehead Institute, MIT, available at http://www.broad.mit.edu/cancer/software/genecluster2/gc2.html.Google Scholar
  40. Shi, L. (2002), Gene Chips Web site. Available at http://www.gene-chips.com.Google Scholar
  41. von Heydebreck, A., Huber, W., Poustka, A. and Vingron, M. (2001), Identifying splits with clear separation: A new class discovery method for gene expression data. Bioinformatics, 17: 107S–114S.CrossRefGoogle Scholar
  42. Wang, H., Yan, X. and Zhang, X. (2002). Analysis of gene expression profiles of hereditary breast cancer using different feature selection and classification methods. Available at http://www.columbia.edu/~xy56/project.htm.Google Scholar
  43. Yang, Y.H., Buckley, M., Dudoit, S. and Speed, T. (2000). Comparison of methods for image analysis on cDNA microarray data. Berkeley Statistics Department, University of Berkeley, USA, Technical Report 584.Google Scholar
  44. Zhu, H. and Snyder, M. (2001). Protein arrays and microarrays. Current Opinion in Chemical Biology, 5: 40–45.PubMedCrossRefGoogle Scholar

Copyright information

© Capital Publishing Company 2009

Authors and Affiliations

  • T.V. Prasad
    • 1
  • S.I. Ahson
    • 2
  1. 1.Dept. of Computer Science & EngineeringLingaya’s Institute of Management & TechnologyFaridabad
  2. 2.Department of Computer ScienceJamia Millia IslamiaNew Delhi

Personalised recommendations