Environmental Cleanup Approach Using Bioinformatics in Bioremediation

  • M. H. Fulekar


Environmental pollutants have become a major global concern. The modern growth of industrialization, urbanization, modern agricultural development, energy generation, have resulted in indiscriminate exploitation of natural resources for fulfilling the human desires and need, which have contributed in disturbing the ecological balance on which the quality of our environment depends. Human beings in true sense are the product of their environment. Man-environment relationship indicates that pollution and deterioration of environment has a social origin. The modern technological advancements in chemical processes have given rise to new products, new pollutants and in much abundant level which are above the self cleaning capacities of environment. One of the major issues in recent times is the threat to the human life caused due to the progressive deterioration of the environment.


Bacterial Artificial Chromosome Pairwise Genome Comparison Alcanivorax Borkumensis Dehalococcoides Ethenogenes Radation Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allison, D.G., Ruiz, B., San-Jose, C., Jaspe, A. and Gilbert, P. (1998). Analysis of biofilm polymers of Pseudomonas fluorescens B52 attached to glass and stainless steel coupons. In: Abstracts of the General Meeting of the American Society for Microbiology, Atlanta, Georgia, 98: 325.Google Scholar
  2. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990). Basic alignment search tools. Journal of Molecular Biology, 215: 403–410.PubMedGoogle Scholar
  3. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 15(17): 3389–3402.CrossRefGoogle Scholar
  4. Alves, R., Chaleil, R.A.G. and Sternberg, M.J.E. (2002). Evolution of enzymes in metabolism: A network perspective. J. Mol. Biol., 320: 751–770.PubMedCrossRefGoogle Scholar
  5. Atlas, R.M. (1981). Microbial degradation of petroleum hydrocarbons: An environmental perspective. Microbiol. Rev., 7: 285–292.Google Scholar
  6. Baker, D. and Sali, A. (2001). Protein structure prediction and structural genomics. Science, 294: 93–96.PubMedCrossRefGoogle Scholar
  7. Bansal, A.K. (2001). Integrating co-regulated gene-groups and pair-wise genome comparisons to automate reconstruction of microbial pathways. IEEE International Symposium on Bioinformatics and Biomedical Engineering. Washington, 209–216.Google Scholar
  8. Bansal, A.K. (1999). An automated comparative analysis of seventeen complete microbial genomes. Bioinformatics, 15(11): 900–908.PubMedCrossRefGoogle Scholar
  9. Bansal, A.K. and Meyer, T.E. (2002). Evolutionary analysis by whole genome comparisons. Journal of Bacteriology, 184(8): 2260–2272.PubMedCrossRefGoogle Scholar
  10. Bansal, A.K. and Woolverton, C. (2003). Applying automatically derived gene-groups to automatically predict and refine microbial pathways. IEEE Transactions of Knowledge and Data Engineering, 15(4): 883–894.CrossRefGoogle Scholar
  11. Bono, H., Ogata, H., Goto, S. and Kanehisa, M. (1998). Reconstruction of amino acid biosynthesis pathways from the complete genome sequence. Genome Research, 8(3): 203–210.PubMedGoogle Scholar
  12. Call, D., Chandler, D. and Brockman, F. (2001). Fabrication of DNA microarrays using unmodified oligonucleotide probes. BioTechniques, 30: 368–379.PubMedGoogle Scholar
  13. Cavalca, L., Hartmann, A., Rouard, N. and Soulas, G. (1999). Diversity of tfdC genes: distribution and polymorphism among 2,4-dichlorohenoxyacetic acid degrading soil bacteria. FEMS Microbiol. Ecol., 29: 45–58.CrossRefGoogle Scholar
  14. Cho, J.C. and Tiedje, J.M. (2002). Quantitative detection of microbial genes by using DNA microarrays. Appl. Environ. Microbial., 68: 1425–1430.CrossRefGoogle Scholar
  15. Delcher, A.L., Harmon, D., Kasif, S., White, O. and Salzberg, S.L. (1999). Improved microbial gene identification with GLIMMER. Nucleic Acids Research, 27(23): 4636–4641.PubMedCrossRefGoogle Scholar
  16. Denef, V.J., Park, J., Rodrigues, J.L. et al. (2003). Validation of a more sensitive method for using spotted oligonucleotide DNA microarrays for functional genomics studies on bacterial communities. Environ. Microbial., 5: 933–943.CrossRefGoogle Scholar
  17. Dennis, P., Edwards, E.A., Liss, S.N. et al. (2003). Monitoring gene expression in mixed microbial communities by using DNA microarrays. Appl. Environ. Microbial., 69: 769–778.CrossRefGoogle Scholar
  18. DeRisi, J.L., Iyer, V.R. and Brown, P.O. (1997). Exploring the metabolic and genetic control of gene expression on a genomic scale. Science, 278: 680–686.PubMedCrossRefGoogle Scholar
  19. Ellis, L.B., Hou, B.K., Kang, W. and Wackett, L.P. (2003). The University of Minnesota Biocatalysis/Biodegradation Database: Post-genomic data mining. Nucleic Acids Res., 31: 262–265.PubMedCrossRefGoogle Scholar
  20. Elsas, J.D. van, Mantynen, V. and Wolters, A.C. (1997). Soil DNA extraction and assessment of the fate of Mycobacterium chlorophenolicum strain PCP-1 in different soils by 16S ribosomal RNA gene sequence based most-probable-number PCR and immunofluorescence. Bioi. Fertil. Soil, 24: 188–195.CrossRefGoogle Scholar
  21. Elsas, J.D. van, Rosado, A., Moore, A.C. and Karlson, V. (1998). Quantitative detection of Sphingomonas chlorophenoliza in soil via competitive polymerase chain reaction. J. Appl. Microbiol., 85: 463–471.PubMedCrossRefGoogle Scholar
  22. Fraser, H.B., Hirsh, A.E., Steinmetz, L.M., Scharfe, C. and Feldman, M.W. (2002). Evolutionary rate in the protein interaction network. Science, 296: 750–752.PubMedCrossRefGoogle Scholar
  23. Gao, H., Wang, Y., Liu, X. et al. (2004). Global transcriptome analysis of the heat shock response of Shewanella oneidensis. J. Bacterial, 186: 7796–7803.CrossRefGoogle Scholar
  24. Gibson, D.T. and Sayler, G.S. (1992). Scientific foundations of bioremediation: Current status and future needs. American Academy of Microbiology, Washington, D.C.Google Scholar
  25. Golyshin, P.N., Martins Dos, Santos, V.A., Kaiser, O. et al. (2003). Genome sequence completed of Alcanivorax borkumensis: A hydrocarbon-degrading bacterium that plays a global role in oil removal from marine systems. J. Biotechnol., 106: 215–220.PubMedCrossRefGoogle Scholar
  26. Guo, C. et al. (1997). Hybridization analysis of microbial DNA from fuel oil-contaminated and noncontaminated soil. Microbial. Ecol., 34: 178–187.CrossRefGoogle Scholar
  27. Guschin, D.Y., Mobarry, B.K., Proudnikov, D., Stahl, D.A., Rittman, B.E. and Mitzabekov, A.D. (1997). Oligonucleotide microarrays as genosensors for determinative environmental studies in microbiology. Appl. Environ. Microbiol., 63: 2397–2402.PubMedGoogle Scholar
  28. Hallier-soulier, S., Ducrocq, V., Mazure, N. and Truffaut, N. (1996). Detection and quantification of degradative genes in soils contaminated by toluene. FEMS Microbiol. Ecol., 20: 121–133.CrossRefGoogle Scholar
  29. Hamann, C., Hegemann, J. and Hildebrandt, A. (1999). Detection of polycyclic aromatic hydrocarbon degradation genes in different soil bacteria by polymerase chain reaction and DNA hybridization. FEMS Microbiol. Lett., 173: 255–263.PubMedCrossRefGoogle Scholar
  30. Hedlund, B.P., Geiselbrecht, A.D., Timothy, 18 and Staley, J.T. (1999). Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas napthovorans, sp. nov. Appl. Environ. Microbiol., 65: 251–259.PubMedGoogle Scholar
  31. Henikoff, S., Henikoff, J.G., Alford, W.J. and Pietrokovski, S. (1995). Automated construction and graphical presentation of protein blocks from unaligned sequences. Gene, 163(2): GC17–26.PubMedCrossRefGoogle Scholar
  32. Herrick, J.B., Madsen, E.L., Batt, C.A. and Ghiorse, W.C. (1993). Polymerase chain reaction amplification of naphthalene-catabolic and 16S rRNA gene sequences from indigenous sediment bacteria. Appl. Environ. Microbiol., 59: 687–694.PubMedGoogle Scholar
  33. Hochstrasser, D.F. (1998). Proteome in perspective. Clin Chem Lab Med. 36: 825–836 [Cross Ref: ISI, Medline].PubMedCrossRefGoogle Scholar
  34. Ideker, T., Thorsson, V., Ranish, J.A., Christmas, R., Buhler, J., Eng, J.K., Bumgarner, R., Goodlett, D.R., Aebersold, R. and Hood, L. (2001). Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science, 292: 929–934.PubMedCrossRefGoogle Scholar
  35. Jansson, J.K. and Prosser, J.I. (1997). Quantification of the presence and activity of specific microorganisms in nature. Mol. Biotechnol., 7: 103–120.PubMedCrossRefGoogle Scholar
  36. Jeong, H., Mason, S.P., Barabási, A.L. and Oltvai, Z.N. (2001). Lethality and centrality in protein networks. Nature, 411: 41–42.PubMedCrossRefGoogle Scholar
  37. Kanaly, R.A. and Harayama, S. (2000). Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J. Bacteriol., 182: 2059–2067.PubMedCrossRefGoogle Scholar
  38. Kelley, B.P., Sharan, R., Karp, R.M., Sittler, T., Root, D.E., Stockwell, B.R. and Ideker, T. (2003). Conserved pathways within bacteria and yeast as revealed by global protein network alignment. PNAS, 100(20): 11394–11399.PubMedCrossRefGoogle Scholar
  39. Kitagawa, W., Suzuki, A., Hoaki, T., Masai, E. and Fukuda, M. (2001). Multiplicity of aromatic ring hydroxylation dioxygenase genes in a strong PCB degrader, Rhodococcus sp. strain RHA 1 demonstrated by denaturing gel electrophoresis. Biosci. Biotechnol. Biochem., 65: 1907–1911.PubMedCrossRefGoogle Scholar
  40. Knaebel, D.B. and Crawford, R.L. (1995). Extraction and purification of microbial DNA from petroleum-contaminated soils and detection of low numbers of toluene, octane and pesticide degraders by multiplex polymerase chain reaction and Southern analysis. Mol. Ecol., 4: 579–591.PubMedCrossRefGoogle Scholar
  41. Kuhner, S., Wohlbrand, L., Fritz, I. et al. (2005). Substrate-dependent regulation of anaerobic degradation pathways for toluene and ethylbenzene in a denitrifying bacterium, strain EbN1. J. Bacterial, 187: 1493–1503.CrossRefGoogle Scholar
  42. Laurie, A.D. and Jones, G.L. (2000). Quantification of phnAc and nahAc in contaminated New Zealand soils by competitive PCR. Appl. Environ. Microbiol., 66: 1814–1817.PubMedCrossRefGoogle Scholar
  43. Liu, Y., Zhou, J.-Z., Omelchenko, M., Beliaev, A., Venkateswaran, A., Stair, J., Wu, L., Thompson, D.K., Xu, D., Rogozin, I.B., Gaidamakova, E.K., Zhai, M., Makarova, K.S., Koonin, E.V. and Daly, M.J. (2003). Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. Proc. Natl. Acad. Sci. USA, 100: 4191–4196.PubMedCrossRefGoogle Scholar
  44. Leahy, J.G. and Colwell, R.R. (1990). Microbial degradation of hydrocarbons in the environment. Microbiol. Rev., 54: 305–315.PubMedGoogle Scholar
  45. Leser, T.D., Boye, M. and Hendriksen, N.B. (1995). Survival and activity of Pseudomonas sp. strain B 13(FR 1) in a marine microcosm determined by quantitative PCR and an rRNA-targeting probe and its effect on the indigenous bacterioplankton. Appl. Environ. Microbiol., 61: 1201–1207.PubMedGoogle Scholar
  46. Levesque, M.J., La-Boissiere, S., Thomas, J.C., Beaudet, R. and Villemur, R. (1997). Rapid method for detecting Desulfitobacterium frappri strain PCP-1 in soil by the polymerase chain reaction. Appl. Microbiol. Biotechnol., 47: 719–725.PubMedCrossRefGoogle Scholar
  47. Lloyd-Jones, G., Laurie, A.D., Hunter, D.W.F. and Fraser, R. (1999). Analysis of catabolic genes for naphthalene and phenanthrene degradation in contaminated New Zealand Soils. FEMS Microbiol Ecol., 29: 69–79.CrossRefGoogle Scholar
  48. Lockhart, D.J., Dong, H., Byrne, M.C., Follettie, M.T., Gallo, M.V., Chee, M.S., Mittmann, M., Wang, C., Kobayashi, M., Horton, H. and Brown, E.L. (1996). Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol., 14: 1675–1680.PubMedCrossRefGoogle Scholar
  49. Lovley, D.R. (2003). Cleaning up with genomic: Applying molecular biology to bioremediation. Nat. Rev. Microbial., 1: 35–44.CrossRefGoogle Scholar
  50. Loy, A., Lehner, A., Lee, N., Adamczyk, J., Meier, H., Ernst, J., Schleifer, K.-H. and Wagner, M. (2002). Oligonucleotide microarray for 16S rRNA-based detections of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl. Environ. Microbiol., 68: 5064–5081.PubMedCrossRefGoogle Scholar
  51. Meckenstock, R., Steinle, P., van der Meer, J.R. and Snozzi, M. (1998). Quantification of bacterial mRNA involved in degradation of 1,2,4-trichlorobenzene by Pseudomonas sp. strain P51 from liquid culture and from river sediment by reverse transcriptase PCR (RT/PCR). FEMS Microbiol. Lett., 167: 123–129.PubMedCrossRefGoogle Scholar
  52. Meta Router: Bioinformatics in Bioremediation.Google Scholar
  53. Meyer, S., Moser, R., Neef, A., Stahl, U. and Kampfer, P. (1999). Differential detection of key enzymes of polyaromatic-hydrocarbon-degrading bacteria using PCR and gene probes. Microbiol., 145: 1731–1741.CrossRefGoogle Scholar
  54. Michael B. Eisen, Paul T. Spellman, Patrick O. Brown and David Botsein. Department of Genetics and Department of Biochemistry and Howard Hughes Medical Institute, Stanford University, School of Medicine, CA 94305, Proc. Natl. Acad. Sci. U.S. 96(19): 10943.Google Scholar
  55. Mount, D.W. (2000). Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor Laboratory Press, New York.Google Scholar
  56. Muffler, A., Bettermann, S., Haushalter, M. et al. (2002). Genome-wide transcription profiling of Corynebacterium glutamicum after heat shock and during growth on acetate and glucose. J. Biotechnol., 98: 255–268.PubMedCrossRefGoogle Scholar
  57. National Research Council (NRC) (1993). In situ bioremediation: When does it work? National Academies Press, Washington, D.C.Google Scholar
  58. Ogata, H., Goto, S., Fujibuchi, W. and Kanehisa, M. (1999). Computation with the KEGG pathway database. Biosystems, 47: 119–128.CrossRefGoogle Scholar
  59. Okuta, A., Ohnishi, K. and Harayama, S. (1998). PCR isolation of catechol 2,3-dioxygenase gene fragments from environmental samples and their assembly into functional genes. Gene, 212: 221–228.PubMedCrossRefGoogle Scholar
  60. Papin, J.A., Price, N.D. and Palsson, B.Ø. (2002). Extreme pathway lengths and reaction participation in genome-scale metabolic networks. Genome Research, 12(12): 1889–1900.PubMedCrossRefGoogle Scholar
  61. Pearson, W.R. and Lipman, D.J. (1988). Improved tools for biological sequence comparison. Proceedings National Academy of Science, USA. 85(8): 2444–2448.CrossRefGoogle Scholar
  62. Rabus, R., Kube, M., Heider, J. et al. (2005). The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Arch. Microbial., 183: 27–36.CrossRefGoogle Scholar
  63. Rhee, S.K., Liu, X., Wu, L. et al. (2004). Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Appl. Environ. Microbial., 70: 4303–4317.CrossRefGoogle Scholar
  64. Rison, S.G.C. and Thornton, J.M. (2002). Pathway evolution, structurally speaking. Curr. Opin. Struct. Biol., 12: 374–382.PubMedCrossRefGoogle Scholar
  65. Sabate, et al. (1999). Isolation and characterization of a 2-methylphenanthrene utilizing bacterium: Identification of ring cleavage metabolites. Appl. Microbiol. Biotechnol., 52: 704–712.CrossRefGoogle Scholar
  66. Samanta, S.K. et al. (2001). Efficiency of naphthalene and salicylate degradation by a recombinant Pseudomonas putida mutant strain defective in glucose metabolism. Appl. Microbiol. Biotechnol., 55: 627–631.PubMedCrossRefGoogle Scholar
  67. Samanta, S.K., Singh, O.V. and Jain, R.K. (2002). Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol, 20: 243–248.PubMedCrossRefGoogle Scholar
  68. Sayler, S. et al. (1985). Application of DNA-DNA colony hybridization to the detection of catabolic genotype in environmental samples. Appl. Environ. Microbiol., 49: 1295–1303.PubMedGoogle Scholar
  69. Schena, M., Shalon, D., Heller, R., Chai, A., Brown, P.O. and Davis, R.W. (1996). Parallel human genome analysis: Microarray-based expression monitoring of 1000 genes. Proc. Natl. Acad. Sci. USA, 93: 10614–10619.PubMedCrossRefGoogle Scholar
  70. Schilling, C.H., Covert, M.W., Famili, I., Church, G.M., Edwards, J.S. and Palsson, B.O. (2002). Genome-scale metabolic model of Helicobacter pylori 26695. Journal of Bacteriology, 184(6): 4582–4593.PubMedCrossRefGoogle Scholar
  71. Schuster, S., Dandekar, T. and Fell, D.A. (1999). Detection of elementary flux modes in biochemical networks: A promising tool for pathway analysis and metabolic engineering. Trends Biotechnology, 17(2): 53–60.CrossRefGoogle Scholar
  72. Schut, G.J., Brehm, S.D., Datta, S. et al. (2003). Whole-genome DNA microarray analysis of a hyperthermophile and an archaeon: Pyrococcus furiosus grown on carbohydrates or peptides. J. Bacterial, 185: 3935–3947.CrossRefGoogle Scholar
  73. Schut, G.J., Zhou, J. and Adams, M.W. (2001). DNA microarray analysis of the hyperthermophilic archaeon Pyrococcus furiosus: Evidence for a new type of sulfur-reducing enzyme complex. J. Bacterial, 183: 7027–7036.CrossRefGoogle Scholar
  74. Selvaratnam, S., Schoedel, B.A., McFarland, B.L. and Kulpa, C.F. (1997). Application of the polymerase chain reaction (PCR) and reverse transcriptase/PCR for determining the fate of phenol-degrading Pseudomonas putida A TCC 11172 in a bioaugmented sequencing batch reactor. Appl. Microbiol. Biotechnol., 47: 236–240.CrossRefGoogle Scholar
  75. Seshadri, R., Adrian, L., Fouts, D.E. et al. (2005). Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes. Science, 307: 105–108.PubMedCrossRefGoogle Scholar
  76. Small, J., Call, D.R., Brockman, F.J., Straub, T. M. and Chandler, D.P. (2001). Direct detection of 16S rRNA in soil extracts by using oligonucleotide microarrays. Appl. Environ. Microbiol., 67: 4708–4716.PubMedCrossRefGoogle Scholar
  77. Sung-Keun Rhee, Xueduan Liu, Liyonu Wu, Song C. Chong, Xiufeng Wan, and Jizhong Zhou (2004). Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee TB 37831-6038. Appl. Environ. Microbial, 70(7): 4303–4317.CrossRefGoogle Scholar
  78. Suzek, B.E., Ermolaeva, M.D., Schreiber, M., Salzberg, S.L. (2001). A probabilistic method for identifying start codons in bacterial genomes. Bioinformatics, 17(12): 1123–1130.PubMedCrossRefGoogle Scholar
  79. Tatusov, R.L., Mushegian, M., Bork, P., Brown, N., Hayes, W.S., Borodovsky, M., Rudd, K.E. and Koonin, E.V. (1996). Metabolism and evolution of Haemophilius Influenzae deduced from a whole-genome comparison with Escherichia Coli. Current Biology, 6: 279–291.PubMedCrossRefGoogle Scholar
  80. Tchelet, R., Meckenstock, R., Steinle, P. and van der Meer, J.R. (1999). Population dynamics of an introduced bacterium degrading chlorinated benzenes in a soil column and in sewage sludge. Biodegradation, 10: 113–125.PubMedCrossRefGoogle Scholar
  81. Thompson, D.K., Beliaev, A.S., Giometti, C.S., Tollaksen, S.L., Khare, T., Lies, D.P., Nealson, K.H., Lim, H., Yates, J. III, Brandt, C.C., Tiedje, J.M. and Zhou, J.-Z. (2002). Transcriptional and proteomic analysis of a ferric uptake regulator (Fur) mutant of Shewanella oneidensis: Possible involvement of Fur in energy metabolism, transcriptional regulation, and oxidative stress. Appl. Environ. Microbiol., 68: 881–892.PubMedCrossRefGoogle Scholar
  82. Tiedje, J.M. (2002). Shewanella — The environmentally versatile genome. Nat. Biotechnol., 20: 1093–1094.PubMedCrossRefGoogle Scholar
  83. Tiquia, S.M., Chong, S.C., Fields, M.W. and Zhou, J. (2004). Oligonucleotide-based functional gene arrays for analysis of microbial communities in the environment. In: Kowalchuk, G.A., F.J. de Bruijn, I.M. Head, A.D. Lakkennans and J.D. van Elsas (eds), Molecular microbial ecology manual. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  84. Tiquia, S.M., Wu, L., Chong, S.C., Passovets, S., Xu, D., Xu, Y. and Zhou, J.-Z. (2004). Evaluation of 50-mer oligonucleotide arrays for detecting microbial populations in environmental samples. BioTechniques, 36: 664–670, 672, 674–675.PubMedGoogle Scholar
  85. Valinsky, L., Vedova, G.D., Scupham, A.J., Figueroa, A., Yin, B., Hartin, R.J., Chroback, M., Crowley, D.E., Jiang, T. and Borneman, J. (2002). Analysis of bacterial community composition by oligonucleotide fingerprinting of rRNA genes. Appl. Environ. Microbiol., 68: 3243–3250.PubMedCrossRefGoogle Scholar
  86. Waddell, Pl. and Kishino, H. (2000). Cluster inference methods and graphical models evaluated on NC160 microarray gene expression data. Genome Informatics, 11: 129–140.PubMedGoogle Scholar
  87. Wasinger, V.C., Cordwell, S.J., Cerpa-Poljak, A. et al. (1995) Progress with gene-product mapping of the Molecules: Mycoplasma genitallium Electrophoresis. 16: 1090–1094 [Cross Ref: ISI, Medline].PubMedCrossRefGoogle Scholar
  88. Watanabe, K. (2001). Microorganisms relevant to bioremediation. Curr. Opin. Biotechnol., 12: 237–241.PubMedCrossRefGoogle Scholar
  89. Watanabe, K. and Baker, P.W. (2000). Environmentally relevant microorganisms. J. Biosci. Bioeng., 89: I–II.Google Scholar
  90. Watanabe, K., Teramoto, M., Futamata, H. and Harayama, S. (1998). Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge. Appl. Environ. Microbiol., 64: 4396–4402.PubMedGoogle Scholar
  91. Waterman, M.S. (1995). Introduction to Computational Biology: Maps, Sequence, and Genomes. Chapman & Hall, London.Google Scholar
  92. Whisstock, J.C. and Lesk, A.M. (2003). Prediction of protein function from protein sequence and structure. Q. Rev. Biophysics, 36(3): 307–340.CrossRefGoogle Scholar
  93. Widada, J., Nijiri, H., Kasuga, K., Yoshida, T., Habe, H. and Omori, T. (2002a). Molecular and diversity of polycyclic aromatic hydrocarbon-degrading bacteria isolated from geographically diverse sites. Appl. Microbiol. Biotechnol., 58: 202–209.PubMedCrossRefGoogle Scholar
  94. Widada, J., Nojiri, H., Yoshida, T., Habe, H. and Omori, T. (2002b). Enhanced degradation of carbazole and 2,3-dichlorodibenzo-p dioxinin soils by Pseudomonas resinovorans strain CA1O. Chemosphere.Google Scholar
  95. Wilson, M.S., Bakerman, C. and Madsen, E.L. (1999). In situ, real-time catabolic gene expression: extraction and characterization of naphthalene dioxygenase mRNA transcripts from groundwater. Appl. Environ. Microbiol., 65: 80–87.PubMedGoogle Scholar
  96. Wodicka, L., Dong, H., Mittmann, M., Ho, M.H. and Lockhart, D.J. (1997). Genomewide expression monitoring in Saccharomyces cerevisiae. Nat. Biotechnol., 15: 1359–1367.PubMedCrossRefGoogle Scholar
  97. Wu, L.Y., Thompson, D.K., Li, G., Hurt, R.A., Tiedje, J.M. and Zhou, J. (2001). Development and evaluation of functional gene arrays for detection of selected genes in the environment. Appl. Environ. Microbiol., 67: 5780–5790.PubMedCrossRefGoogle Scholar
  98. Ye, R.W., Tao, W., Bedzyk, L. et al. (2000). Global gene expression profiles of Bacillus subtilis grown under anaerobic conditions. J. Bacterial., 182: 4458–4465.CrossRefGoogle Scholar
  99. Yeates, C., Holmes, A.J. and Gillings, M.R. (2000). Novel forms of ring-hydroxylating dioxygenases are widespread in pristine and contaminated soils. Environ. Microbiol., 2: 644–653.PubMedCrossRefGoogle Scholar
  100. Zhang, C. and Bennett, G.N. (2005). Biodegradation of xenobiotics by anaerobic bacteria. Appl Microbiol Biotechnol, 67: 600–618.PubMedCrossRefGoogle Scholar
  101. Zhou, J. (2003). Microarrays for bacterial detection and microbial community analysis. Curr. Opin. Microbiol., 6: 288–294.PubMedCrossRefGoogle Scholar
  102. Zhou, J.-Z. and Thompson, D.K. (2002). Challenges in applying microarrays to environmental studies. Curr. Opin. Biotechnol., 13: 202–204.CrossRefGoogle Scholar

Copyright information

© Capital Publishing Company 2009

Authors and Affiliations

  • M. H. Fulekar
    • 1
  1. 1.Department of Life SciencesUniv. of MumbaiMumbai

Personalised recommendations