Thermodynamics, Irreversibility, and Optimality in Land Surface Hydrology

  • A. KleidonEmail author
  • S. Schymanski
  • M. Stieglitz


The water exchange at the land surface is driven by the input of water by precipitation and the loss by runoff generation and evapotranspiration into the atmosphere. It is strongly linked to the surface energy balance by the flux of latent heat associated with evapotranspiration, but also to the dynamics of the atmosphere and the terrestrial biosphere.


Hydrology Thermodynamics Entropy production Irreversibility Memory Vegetation Biotic effects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Caldwell MM, Dawson TE, Richards JH (1998) Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113: 151–161CrossRefGoogle Scholar
  2. Campbell GS, Norman JM (1998) An introduction to environmental biophysics. Springer Publishers, New York, NY, 2nd editionGoogle Scholar
  3. Hillel D (1998) Environmental soil physics. Academic Press, San Diego, 771ppGoogle Scholar
  4. Kleidon A, Fraedrich K, Kunz T, Lunkeit F (2003) The atmospheric circulation and states of maximum entropy production. Geophys. Res. Lett. 30: 2223CrossRefGoogle Scholar
  5. Kleidon A (2004) Beyond Gaia: Thermodynamics of life and Earth system functioning. Clim. Ch. 66: 271–319CrossRefGoogle Scholar
  6. Kleidon A, Lorenz RD (2005) Non-equilibrium thermodynamics and the production of entropy: life, Earth, and beyond. Springer Publishers, HeidelbergCrossRefGoogle Scholar
  7. Kleidon A, Fraedrich K, Kirk E, Lunkeit F (2006) Maximum Entropy Production and the Strength of Boundary Layer Exchange in an Atmospheric General Circulation Model. Geophys. Res. Lett. 33: L06706CrossRefGoogle Scholar
  8. Kleidon A (2006) The climate sensitivity to human appropriation of vegetation productivity and its thermodynamic characterization. Glob. Planet. Ch. 54: 109–127CrossRefGoogle Scholar
  9. Kleidon A (2008) Energy balance. In: Jœrgensen SE, Fath BD (eds.) Global Ecology. Vol. 2 of Encyclopedia of Ecology, 5: 1276–1289, Elsevier, Oxford.Google Scholar
  10. Kondepudi D, Prigogine I (1998) Modern thermodynamics, From heat engines to dissipative structures. Wiley, Chichester, 486ppGoogle Scholar
  11. Lorenz EN (1955) Available potential energy and the maintenance of the general circulation. Tellus 7: 157–167CrossRefGoogle Scholar
  12. Lorenz RD, Lunine JI, Withers PG, McKay CP (2001) Titan, Mars and Earth: Entropy production by latitudinal heat transport. Geophys. Res. Lett. 28: 415–418CrossRefGoogle Scholar
  13. Martyushev LM, Seleznev VD (2006) Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 426: 1–45CrossRefGoogle Scholar
  14. Ozawa H, Ohmura A, Lorenz RD, Pujol T (2003) The second law of thermodynamics and the global climate system – A review of the Maximum Entropy Production principle. Rev. Geophys. 41: 1018CrossRefGoogle Scholar
  15. Paltridge GW (1975) Global dynamics and climate – a system of minimum entropy exchange. Q. J. Roy. Meteorol. Soc. 101: 475–484CrossRefGoogle Scholar
  16. Pauluis OM (2005) Water vapor and entropy production in the Earth’s atmosphere. In: Kleidon A, Lorenz RD (eds) Non-equilibrium thermodynamics and the production of entropy: life, Earth, and beyond. Springer Verlag, Heidelberg, 107–120CrossRefGoogle Scholar
  17. Pauluis OM, Balaji V, Held IM (2000) Frictional dissipation in a precipitating atmosphere. J. Atmos. Sci. 57: 987–994CrossRefGoogle Scholar
  18. Pauluis OM, Held IM (2002) Entropy budget of an atmosphere in radiative-convective equilibrium. Part I: maximum work and frictional dissipation. J. Atmos. Sci. 59: 125–139.CrossRefGoogle Scholar
  19. Peixoto O (1992) Physics of climate. American Institute of Physics, New YorkGoogle Scholar
  20. Roderick ML (2001) On the use of thermodynamic methods to describe water relations in plants and soil. Aust. J. Plant Physiol. 28: 729–742Google Scholar
  21. Schneider ED, Kay JJ (1994) Life as a manifestation of the second law of thermodynamics. Math. Comput. Modeling 19: 25–48CrossRefGoogle Scholar
  22. Tesař M, Šír M, Lichner Ľ, Čermák J (2007) Plant transpiration and net entropy exchange on the Earth’s surface. Biologia, Bratislava, 62/5:547–551Google Scholar
  23. Tributsch H, Čermák J, Nadezhdina N (2005) Kinetic studies on tensile state of water in trees. J. Phys. Chem. B 109: 17693–1707CrossRefGoogle Scholar
  24. Ulanowicz RE, Hannon BM (1987) Life and the production of entropy. Proc. R. Soc. Lond. B 232: 181–192.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Biospheric Theory and Modelling Group Max-Planck-Institut für BiogeochemieJenaGermany
  2. 2.Department of Civil and Environmental EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations