Ozone Air Pollution in Extreme Weather Situation – Environmental Risk in Mountain Ecosystems

Abstract

Extreme weather events including heat waves have assumed significant changes in intensity and frequency in the context of global warming. Unpreceeded 15-day long heat wave with record temperatures and unusually persistent high-ozone concentrations was observed in Europe during August 2003 (Vautard et al. 2005). Special meteorological situation favored the progressive accumulation of ozone.

Keywords

Ground-level ozone Episode Temporal and spatial variation Complex topography Emissions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashmore MR (2005) Assessing the future global impacts of ozone to vegetation, Plant. Cell. Env., 28, 949–964CrossRefGoogle Scholar
  2. Bičárová S, Fleischer P (2006) Windstorm effect on forest sources of biogenic volatile organic compound emissions in the High Tatras. Contr. Geophys. Geod., 36, 3, 269–282Google Scholar
  3. Bičárová S, Sojáková M, Burda C, Fleischer P (2005) Summer ground level ozone maximum in Slovakia in 2003. Contr. Geophys. Geod., 35, 3, 265–279Google Scholar
  4. Clappier A (1998) A correction method for use in multidimensional time-splitting advection algorithms: application to two- and three-dimensional transport. Monthly Weather Review 126, 232–242CrossRefGoogle Scholar
  5. Couach O, Balin I, Jiménez R, Ristori P, Peregeo S, Kirchner F, Simeonov V, Calpini B, van den Bergh H (2003) An investigation of ozone and planetary boundary layer dynamics over the complex topography of Grenoble combining measurements and modeling. Atmos. Chem. Phys., 3, 549–562CrossRefGoogle Scholar
  6. Fleischer P, Godzik B, Bičárová S, Bytnerowicz A (2005) Effects of air pollution and climate change on forests of the Tatra Mountains. In: The 6th International Symposium on Plant Responses to Air Pollution and Global Changes (eds: K. Omasa, I. Nouchi, L. J. De Kok). Tsukuba-Ibaraki, JAPAN, 21.–22. 10. 2004. Springer-Verlag Tokyo, 111–121Google Scholar
  7. Forkel R, Knoche R (2006) Regional climate change and its impact on photooxidant concentrations in southern Germany: Simulations with a coupled regional climate-chemistry model. J. Geophys. Res., 111, D12302, doi:10.1029/2005JD006748CrossRefGoogle Scholar
  8. Gong W, Cho HR (1993) A numerical scheme for the integration of the gas phase chemical rate equations in three-dimensional atmospheric models′. Atmospheric Environment 27A(14), 2147–2160Google Scholar
  9. Guenther A, Zimmerman P, Harley P, Monson R, Fall R (1993) Isoprene and monoterpene emission rate variability: Model evaluation and sensitivity analysis. J. Geophys. Res., 98, 12609–12617CrossRefGoogle Scholar
  10. Hrouzková E, Kremler M, Sojáková M, Závodský D (2004) Ground level ozone in Slovakia in 2003. Meteorol. čas., 7, 17–24Google Scholar
  11. Kremler M (2006) Modelovanie výmeny látok medzi zložkami prírodného prostredia: Prízemný ozón. PhD thesis. FMFI UK Bratislava, 170 s (in Slovak)Google Scholar
  12. Ostrožlík M (2004) Results of meteorological measurements at the observatories of the Geophysical Institute of the Slovak Academy of Sciences. Year-book 2003, Bratislava, 33ppGoogle Scholar
  13. Paltridge G, Platt C (1976) Radiative Processes in Meteorology and Climatology. Number 5 in Developments in Atmospheric Science. Elsevier. AmsterdamGoogle Scholar
  14. Perego S (1999) A numerical mesoscale model for simulation of regional photosmog in complex terrain: model description and application during POLLUMET 1993 (Switzerland). Meteor. Atmos. Phys., 70, 43–69CrossRefGoogle Scholar
  15. Rhie C, Chow W (1983) Numerical study of the turbulent flow past an airfoil with trailing edge separation’, AIAA Journal 21(11), 1525–1532CrossRefGoogle Scholar
  16. Rodríguez P, Caballero S, Galindo N, Torres JG, Orza JAG, Yubero E, Nicolás J, Crespo J (2004) Characterization of an episode of high tropospheric ozone levels in the Iberian peninsula in August 2003. In: Proceedings of the XX Quadrennial Ozone Symposium (Ed. Zeferos). Kos, 906Google Scholar
  17. Steiner AL, Tonse S, Cohen RC, Goldstein AH, Harley RA (2006) Influence of future climate and emissions on regional air quality in California. J. Geophys. Res., 111, D18303, doi:10.1029/2005JD006935CrossRefGoogle Scholar
  18. Stockwell WR, Kirchner F, Kuhn M, Seefeld S (1997) A new mechanism for regional atmospheric chemistry modeling. J. Geophys. Res., 102 (D22), 25847–25879CrossRefGoogle Scholar
  19. Stockwell WR, Middleton P, Chang JS, Tang X (1990) The second generation Regional Acid Deposition Model chemical mechanism for regional air quality modelling. A new mechanism for regional atmospheric chemistry modeling. J. Geophys. Res., 95 (D10), 16343–16367CrossRefGoogle Scholar
  20. Vautard R, Honore C, Beekmann M, Rouil L (2005) Simulation of ozone during the August 2003 heat wave and emission control scenarios. Atmospheric Environment 39, 2957–2967CrossRefGoogle Scholar
  21. Vestreng V, Breivik K, Adams M, Wagner A, Goodwin J, Rozovskaya O, Pacyna JM (2005) “Inventory Review 2005. Emission Data report to LRTAP Convention and NEC Directive. Initial review for HMs and POPs”. EMEP Technical Report MSC-W 1/2005, 114pp. ISSN 0804-2446Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Geophysical Institute Slovak Academy of Sciences, Meteorological Observatory Stará LesnáLomnicaSlovakia
  2. 2.Research Station of the Tatra National Park, State Forest of TANAPLomnicaSlovakia

Personalised recommendations